Applied Physics B

, 124:138 | Cite as

Fabry–Perot etalon-based ultraviolet high-spectral-resolution lidar for tropospheric temperature and aerosol measurement

  • Fahua ShenEmail author
  • Peng Zhuang
  • Wenjuan Shi
  • Chengqun Qiu
  • Bangxin Wang
  • Chenbo Xie


The 355-nm ultraviolet high-spectral-resolution technique based on a triple Fabry–Perot etalon (FPE) for simultaneous high-accuracy measurement of tropospheric temperature and aerosol is proposed. The detection principle is analyzed and the whole structure of lidar system is designed. The parameters of the triple FPE-labeled FPE-1, FPE-2 and FPE-L are optimized in detail. FPE-1, FPE-2 and FPE-L are used for measuring aerosol and separating Rayleigh signal from Mie signal, for measuring temperature and for frequency locking, respectively. The performance simulation of the proposed lidar system showed that the measurement errors of temperature and backscatter ratio are below 2 K and 0.17% at 8 km and below 4 K and 0.39% at 12 km with 30-m range resolution and 1-min integration time using a 48 mJ pulse energy and 20 Hz repetition rate laser and a 25-cm telescope. The influence of Mie signal contamination on temperature measurement mainly depends on the relative Mie rejection factors of the two channels for temperature measurement, which are 4.2 and 10.4% of our proposed system at 270 K and the corresponding temperature deviation is 1 K with backscatter ratio of 10 and Rayleigh photoelectrons of 105. Assuming the same number of total photoelectrons received, the backscatter ratio and temperature measurement accuracies of our proposed lidar are 4.16–22.58 and 2.07–2.76 times, respectively, that of the traditional dual-pass multi-cavity-FPE-based HSRL at temperature of 220–290 K and backscatter ratio of 1–10.



This work was supported by the Natural Science Foundation of Jiangsu Province, China (BK20161316), the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Sciences (2017), the Young Scientists Fund of the National Natural Science Foundation of China (51504214).


  1. 1.
    J.D. Klett, Stable analytical inversion solution for processing lidar returns. Appl. Opt. 20, 211–220 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    F.G. Fernald, Analysis of atmospheric lidar observations: some comments. Appl. Opt. 23, 652–655 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    D. Hua, X. Song, Advances in lidar remote sensing techniques. Infrared Laser Eng. 37, 26–32 (2008)MathSciNetGoogle Scholar
  4. 4.
    N. Sugimoto, I. Matsui, Z. Liu, A. Shimizu, I. Tamamushi, K. Asai, Observation of aerosols and clouds using a two-wavelength polarization lidar during the Nauru99 experiment. Sea Sky 76, 93–98 (2000)Google Scholar
  5. 5.
    G. Bo, D. Liu, B. Wang, D. Wu, Z. Zhong, Two-wavelength polarization airborne lidar for observation of aerosol and cloud. Chin. J. Lasers 39, 203–208 (2012)Google Scholar
  6. 6.
    J.T. Sroga, E.W. Eloranta, S.T. Shipley, F.L. Roesler, P.J. Tryon, High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis. Appl. Opt. 22, 3725–3732 (1983)ADSCrossRefGoogle Scholar
  7. 7.
    C.Y. She, R.J. Alvarez II, L.M. Caldwell, D.A. Krueger, High-spectral-resolution Rayleigh–Mie lidar measurement of vertical aerosol and atmospheric profiles., Appl. Phys. B 55, 541–543 (1992)CrossRefGoogle Scholar
  8. 8.
    J.E. Kalshoven Jr, C.L. Korb, G.K. Schwemmer, M. Dombrowski, Laser remote sensing of atmospheric temperature by observing resonant absorption of oxygen. Appl. Opt. 20, 1967–1971 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    F.A. Theopold, J. Bösenberg, Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment. J. Atmos. Ocean. Technol. 10, 165–179 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    V. Wulfmeyer, Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter. Appl. Opt. 37, 3804–3824 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    J. Bösenberg, Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology. Appl. Opt. 37, 3845–3860 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    A. Hauchecorne, M.L. Chanin, Density and temperature profiles obtained by lidar between 35 and 70 km. Geophys. Res. Lett. 7, 565–568 (1980)ADSCrossRefGoogle Scholar
  13. 13.
    W.N. Chen, C.C. Tsao, J.B. Nee, Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere. J. Atmos. Sol. Terr. Phys. 66, 39–49 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    L. Bu, J. Guo, L. Tian, X. Huang, B. Liu, Y. Feng, Rayleigh-Raman lidar used for atmospheric temperature profile measurement. High Power Laser Part. Beams 7, 1449–1452 (2010)Google Scholar
  15. 15.
    G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar. Nat. Phys. Sci. 229, 78–79 (1971)ADSCrossRefGoogle Scholar
  16. 16.
    B. Witschas, C. Lemmerz, O. Reitebuch, Daytime measurements of atmospheric temperature profiles (2–15 km) by lidar utilizing Rayleigh–Brillouin scattering. Opt. Lett. 39, 1972–1975 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    R.L. Schwiesow, L. Lading, Temperature profiling by Rayleigh scattering lidar. Appl. Opt. 20, 1972–1979 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    H. Shimizu, S.A. Lee, C.Y. She, High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters. Appl. Opt. 22, 1373–1381 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    H. Shimizu, K. Nogachi, C.Y. She, Atmospheric temperature measurement by a high spectral resolution lidar. Appl. Opt. 25, 1460–1466 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    C.Y. She, R.J. Alvarez, L.M. Caldwell, D.A. Krueger, High spectral resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles. Opt. Lett. 17, 541–543 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    D.A. Krueger, L.M. Caldwell, R.J. Alvarez II, and C.Y. She, Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh–Mie lidar. J. Atmos. Ocean. Technol. 10, 533–545 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    C.A. Tepley, S.I. Sargoytchev, R. Rojas, The Doppler Rayleigh lidar system at Arecibo. IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    D. Hua, T. Kobayashi, Ultraviolet Rayleigh–Mie lidar by use of a multicavity Fabry–Perot filter for accurate temperature profiling of the troposphere. Appl. Opt. 44, 6474–6478 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    D. Hua, M. Uchida, T. Kobayashi, UV Rayleigh–Mie lidar with Mie scattering correction by Fabry–Perot etalon for temperature profiling of the troposphere. Appl. Opt. 44, 1305–1314 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, Y. Han, Stratospheric temperature measurement with scanning Fabry–Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar. Opt. Express 22, 21775–21789 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Z.S. Liu, D.C. Bi, X.Q. Song, J.B. Xia, R.Z. Li, Z.J. Wang, C.Y. She, Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements. Opt. Lett. 34, 2712–2714 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    R.J. Alvarez, Measurement of tropospheric temperature and aerosol extinction using high spectral resolution lidar. Ph.D. Thesis Colorado State Univ., Fort Collins, (1991)Google Scholar
  28. 28.
    G. Vaughan, D.P. Wareing, S.J. Pepler, L. Thomas, V. Mitev, Atmospheric temperature measurements made by rotational Raman scattering. Appl. Opt. 32, 2758–2764 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    N. Nedeljkovic, A. Hauchecorne, M.L. Chanin, Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km. IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    A. Behrendt, J. Reichardt, Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference filter based polychromator. Appl. Opt. 39, 1372–1378 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    A. Behrendt, T. Nakamura, M. Onishi, R. Baumgrat, T. Tsuda, Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient. Appl. Opt. 41, 7657–7666 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, D. Müller, Daytime operation of a pure rotational Raman lidar by use of a Fabry–Perot interferometer. Appl. Opt. 44, 3593–3603 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    S. Wang, J. Su, P. Zhao, K. Cao, S. Hu, H. Wei, K. Tan, H. Hu, A pure rotational Raman-lidar based on three-stage Fabry–Perot etalons for monitoring atmospheric temperature. Acta Phys. Sin. 57, 3941–3946 (2008)Google Scholar
  34. 34.
    G. Tenti, C.D. Boley, R.C. Desai, On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases. Can. J. Phys. 52, 285–290 (1974)ADSCrossRefGoogle Scholar
  35. 35.
    M.J. Mcgill, J.D. Spinhirne, Comparison of two direct-detection Doppler lidar techniques. Opt. Eng. 37, 2675–2686 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    F. Shen, Y. Xia, A. Yu, C. Liu, Transmission spectral characteristics of F–P interferometer under multi-factors. Infrared Laser Eng 6, 1800–1805 (2015)Google Scholar
  37. 37.
    G.J. Sloggett, Fringe broadening in Fabry–Perot interferometers. Appl. Opt. 23, 2427–2432 (1984)ADSCrossRefGoogle Scholar
  38. 38.
    J.A. Mckay, D.J. Rees, High-performance Fabry–Perot etalon mount for spaceflight. Opt. Eng. 39, 315–319 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    X. Xu, N. Weng, L. Xiao, G. Sun, Detecting the vertical velocity in the atmosphere boundary layer in Hefei using Sodar. J. Atmos. Environ. Opt. 5, 101–104 (2006)Google Scholar
  40. 40.
    A. Souprayen, A. Garnier, A. Hertzog, J. Hauchecorne, Porteneuve, Rayleigh–Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results. Appl. Opt. 38, 2410–2421 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    R.A. McClatchey, A.P. D’Agati, Atmospheric transmission of laser radiation. AFGL Report, No. TR-78-0029, USA (1978) p. 24Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fahua Shen
    • 1
    Email author
  • Peng Zhuang
    • 2
  • Wenjuan Shi
    • 1
  • Chengqun Qiu
    • 1
  • Bangxin Wang
    • 2
  • Chenbo Xie
    • 2
  1. 1.Department of New Energy and Electronic EngineeringYancheng Teachers UniversityYanchengChina
  2. 2.Anhui Institute of Optics and Fine Mechanics, Key Laboratory of Atmospheric OpticsChinese Academy of SciencesHefeiChina

Personalised recommendations