Advertisement

Applied Physics B

, 124:135 | Cite as

Diagnostic of electron temperature from bremsstrahlung in overdense targets

  • G. Hernández
  • F. Fernández
Article
  • 81 Downloads

Abstract

Models for characterization of laser-accelerated electron in the non-relativistic regime via its produced bremsstrahlung are provided for both thin and thick targets. An effective temperature functional is proposed to overcome the so-called cold and hot “temperatures” in the emission spectra, which are shown not to describe the underlying electron energy distribution. In contrast, this functional allows for identifying the real effect of a hot electron component. A false “heating” effect due to added noise is also exposed. The models are shown to be in good agreement with Monte Carlo simulations, as well as with other analysis methods when applied to experimental data, both in the tens of keV range.

Notes

Acknowledgements

One of the authors (G. H.) gratefully acknowledges the Consejería de Educación de la Junta de Castilla y León and the European Social Fund for financial support.

Supplementary material

340_2018_6999_MOESM1_ESM.txt (1 kb)
Supplementary material 1 (TXT 1 KB)
340_2018_6999_MOESM2_ESM.lis (14 kb)
Supplementary material 1 (LIS 14 KB)
340_2018_6999_MOESM3_ESM.lis (14 kb)
Supplementary material 1 (LIS 14 KB)
340_2018_6999_MOESM4_ESM.lis (14 kb)
Supplementary material 1 (LIS 14 KB)
340_2018_6999_MOESM5_ESM.lis (14 kb)
Supplementary material 1 (LIS 14 KB)
340_2018_6999_MOESM6_ESM.lis (14 kb)
Supplementary material 1 (LIS 14 KB)
340_2018_6999_MOESM7_ESM.lis (14 kb)
Supplementary material 1 (LIS 14 KB)

References

  1. 1.
    G. Malka, J. Miquel, Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target. Phys. Rev. Lett. 77(1), 75 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    B. Bezzerides, R. Jones, D. Forslund, Plasma Mechanism for Ultraviolet Harmonic Radiation Due to Intense C O 2 Light. Phys. Rev. Lett. 49(3), 202 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    A.G. Mordovanakis, P.E. Masson-Laborde, J. Easter, K. Popov, B. Hou, G. Mourou et al., Temperature scaling of hot electrons produced by a tightly focused relativistic-intensity laser at 0.5 kHz repetition rate. Appl. Phys. Lett. 96(7), 071109 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    K. Estabrook, W.L. Kruer, Properties of resonantly heated electron distributions. Phys. Rev. Lett. 40(1), 42 (1978)ADSCrossRefGoogle Scholar
  5. 5.
    S. Wilks, W. Kruer, Absorption of ultrashort laser pulses by solid targets and overdense plasmas. IEEE J. Quantum Electron. 33, 1954–1968 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    A.S. Radunsky, I.A. Walmsley, S.P. Gorza, P. Wasylczyk, Compact spectral shearing interferometer for ultrashort pulse characterization. Opt. Lett. 32(2), 181–183 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    R. Loetzsch, A. Lübcke, F. Zamponi, T. Kämpfer, I. Uschmann, E. Förster, Time-resolved X-ray diffraction of cryogenic samples using a laser based plasma source. In: Short Wavelength Laboratory Sources. Royal Society of Chemistry. pp. 398–406 (2014)Google Scholar
  8. 8.
    S. Fourmaux, S. Corde, K. T. Phuoc, P. Lassonde, G. Lebrun, S. Payeur, et al, Single shot phase contrast imaging using laser-produced Betatron X-ray beams. Opt. Lett. 36(13), 2426–2428 (2011). http://ol.osa.org/abstract.cfm?URI=ol-36-13-2426
  9. 9.
    F. Dorchies, A. Lévy, C. Goyon, P. Combis, D. Descamps, C. Fourment et al., Unraveling the solid-liquid-vapor phase transition dynamics at the atomic level with ultrafast X-ray absorption near-edge spectroscopy. Phys. Rev. Lett. 107(24), 245006 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    F. Albert, A. Thomas, S. Mangles, S. Banerjee, S. Corde, A. Flacco et al., Laser wakefield accelerator based light sources: potential applications and requirements. Plasma Phys. Controlled Fusion 56(8), 084015 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Liu W, Wacker D, Gati C, Han GW, James D, Wang D, et al. Serial femtosecond crystallography of G protein–coupled receptors. Science 342(6165), 1521–1524 (2013). http://science.sciencemag.org/content/342/6165/1521
  12. 12.
    C. Zulick, B. Hou, F. Dollar, A. Maksimchuk, J. Nees, A. G. R. Thomas, et al., High resolution bremsstrahlung and fast electron characterization in ultrafast intense laser–solid interactions. N. J. Phys. 15(12), 123038 (2013). http://stacks.iop.org/1367-2630/15/i=12/a=123038
  13. 13.
    D. Batani, R. R. Freeman, S. Baton, The transport of relativistic, laser-produced electrons in matter—Part 1. In: K. Yamanouchi, S. L. Chin, Agostini P, Ferrante G, editors. Progress in Ultrafast Laser Science III. Springer (2010)Google Scholar
  14. 14.
    J. Galy, M. Maučec, D. J. Hamilton, R. Edwards, J. Magill, Bremsstrahlung production with high-intensity laser matter interactions and applications. N. J. Phys. 9(2), 23 (2007). http://stacks.iop.org/1367-2630/9/i=2/a=023
  15. 15.
    F. B. Hildebrand, Introduction to numerical analysis. Courier Corporation (1987)Google Scholar
  16. 16.
    M. Berger, J. Coursey, M. Zucker, J. Chang, Stopping-power and range tables, [Online]. http://www.nist.gov/pml/data/star/. National Institute of Standards and Technology, Gaithersburg, MD (2009)
  17. 17.
    S. Buffechoux, J. Psikal, M. Nakatsutsumi, L. Romagnani, A. Andreev, K. Zeil et al., Hot electrons transverse refluxing in ultraintense laser-solid interactions. Phys. Rev. Lett. 105, 015005 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    D.J.S. Findlay, Analytic representation of bremsstrahlung spectra from thick radiators as a function of photon energy and angle. Nucl. Instrum. Methods Phys. Res., Sect. A 276(3), 598–601 (1989)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S.M. Seltzer, M.J. Berger, Bremsstrahlung energy spectra from electrons with kinetic energy 1 keV–10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z= 1–100. At. Data Nucl. Data Tables 35(3), 345–418 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, editors. NIST Handbook of Mathematical Functions. New York, NY: Cambridge University Press (2010). Print companion to Ref. [21]Google Scholar
  21. 21.
    NIST Digital Library of Mathematical Functions. Online companion to Ref. [20]. Release 1.0.11 of 2016-06-08. http://dlmf.nist.gov/
  22. 22.
    E. B. Podgoršak. Radiation physics for medical physicists. Springer (2010)Google Scholar
  23. 23.
    H.A. Kramers, XCIII. On the theory of X-ray absorption and of the continuous X-ray spectrum. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 46(275), 836–871 (1923)CrossRefGoogle Scholar
  24. 24.
    G. Hernández, F. Fernández, A model of tungsten anode X-ray spectra. Med. Phys. 43(8), 4655–4664 (2016)Google Scholar
  25. 25.
    G. Hernández, F. Fernández. xpecgen: a program to calculate X-ray spectra generated in tungsten anodes. J. Open Source Softw. (2016)Google Scholar
  26. 26.
    T.T. Böhlen, F. Cerutti, M.P.W. Chin, A. Fassò, A. Ferrari, P.G. Ortega et al., The FLUKA code: developments and challenges for high energy and medical applications. Nucl. Data Sheets 120, 211–214 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    A. Ferrari, P. R. Sala, A. Fassò, J. Ranft, FLUKA: a multi-particle transport code. Geneva: CERN (2005). http://cds.cern.ch/record/898301
  28. 28.
    C. Fonseca, Generación de electrones y rayos X a partir de pulsos láser de GW y alta tasa de repetición, y su protección radiológica [PhD dissertation] (2011)Google Scholar
  29. 29.
    C. Fonseca, C. Méndez, C. Ruiz, F. Fernández, L. Roso, Measurement of radiation produced by ultra short laser pulses interacting with solid targets. AIP Conf. Proc. 1231(1), 223–224 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Física Fundamental and IUFFyMUniversidad de SalamancaSalamancaSpain

Personalised recommendations