Advertisement

Applied Physics B

, 124:130 | Cite as

Informing TiRe-LII assumptions for soot nanostructure and optical properties for estimation of soot primary particle diameter

  • Madhu Singh
  • Joseph P. Abrahamson
  • Randy L. Vander Wal
Article
  • 186 Downloads

Abstract

Time-resolved laser-induced incandescence for primary particle size determination is tested using three model carbon blacks. Optical properties change as does the nanostructure upon laser annealing, whereas aggregate morphology and primary particle size remain equivalent to the original material, as shown by transmission electron microscopy (TEM). Primary particle diameters found from fitting experimentally measured time-resolved laser-induced incandescence (LII) signals with existing models do not match the particle diameters as directly visualized by TEM. The accommodation coefficient is shown to be a crucial parameter which can result in substantial variations in simulated conductive cooling profiles for particle sizing. Aggregate structure in the form of intra-aggregate connectivity and shielding is an additional underlying cause for erroneous particle sizing, not presently captured by LII models.

Abbreviations

IR

Infra-red

HOMO

Highest occupied molecular orbital

LUMO

Lowest unoccupied molecular orbital

LII

Laser-induced Incandescence

NIR

Near infra-red

RDG-FA

Rayleigh–Debye–Gans approximation for fractal aggregates

TEM

Transmission electron microscopy

TTH

Time–temperature history

UV

Ultraviolet

YAG

Yttrium aluminum garnet

List of symbols

C

Heat capacity, J/mol K

dp

Primary particle diameter, nm

Eg

Optical band gap, eV

E(m)

Index of refraction function

h

Planck’s constant, 6.626 × 10−34 m2 kg/s

t

time, s

T

Temperature, K

Greek symbols

α

Thermal accommodation coefficient

π

pi, 3.1415926

ρ

Density, g/cm3

λ

Wavelength, nm

Ʌ

Heat transfer coefficient, W/m2 K

σabs

Absorption cross-section

ν

Frequency of incident radiation, Hz

Notes

Acknowledgements

The authors acknowledge support by the National Science Foundation (NSF), Chemical, Bioengineering, Environmental, and Transport Systems (CBET), under Grant number 1236757. TEM was performed using the facilities of the Materials Research Institute at The Pennsylvania State University. Guidance and support on using LIISim and LIISim 3.0 provided by Raphael Mansmann is much appreciated.

Supplementary material

340_2018_6994_MOESM1_ESM.docx (17.4 mb)
Supplementary material 1 (DOCX 17847 KB)

References

  1. 1.
    H.A. Michelsen, Probing soot formation, chemical and physical evolution, and oxidation: a review of in situ diagnostic techniques and needs. Proc. Combust. Inst. 36, 717–735 (2017)CrossRefGoogle Scholar
  2. 2.
    H.A. Michelsen, C. Schulz, G.J. Smallwood, S. Will, Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51, 2–48 (2015)CrossRefGoogle Scholar
  3. 3.
    R.L. Vander Wal, M.Y. Choi, Pulsed laser heating of soot: morphological changes. Carbon 37, 231–239 (1999)CrossRefGoogle Scholar
  4. 4.
    R.L. Vander Wal, T.M. Ticich, A. Brock Stephens, Can soot primary particle size be determined using laser-induced incandescence? Combust. Flame 116, 291–296 (1999)CrossRefGoogle Scholar
  5. 5.
    H.A. Michelsen et al., Modeling laser-induced incandescence of soot: enthalpy changes during sublimation, conduction, and oxidation. Appl. Phys. B Lasers Opt. 93, 645–656 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    T.L. Farias, ÜÖ Köylü, M.G. Carvalho, Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates. Appl. Opt. 35, 6560–6567 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    H.A. Michelsen et al., Modeling laser-induced incandescence of soot: a summary and comparison of LII models. Appl. Phys. B 87, 503–521 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    R.L. Vander Wal, Laser-induced incandescence: excitation and detection conditions, material transformations and calibration. Appl. Phys. B 96, 601–611 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    X. López-Yglesias, P.E. Schrader, H.A. Michelsen, Soot maturity and absorption cross sections. J. Aerosol Sci. 75, 43–64 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    H.A. Michelsen, Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles. J. Chem. Phys. 118, 7012–7045 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    E. Cenker, W.L. Roberts, Quantitative effects of rapid heating on soot-particle sizing through analysis of two-pulse LII. Appl. Phys. B 123, 74 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    F. Goulay, P.E. Schrader, H.A. Michelsen, Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence. Appl. Phys. B 100, 655–663 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    H.A. Michelsen, P.E. Schrader, F. Goulay, Wavelength and temperature dependences of the absorption and scattering cross sections of soot. Carbon 48, 2175–2191 (2010)CrossRefGoogle Scholar
  14. 14.
    K.C. Smyth, C.R. Shaddix, The elusive history of m = 1.57–0.56i for the refractive index of soot. Combust. Flame 107, 314–320 (1996)CrossRefGoogle Scholar
  15. 15.
    R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Optical and microscopy investigations of soot structure alterations by laser-induced incandescence. Appl. Phys. B Lasers Opt. 67, 115 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    C. Jäger, T. Henning, R. Schlögl, O. Spillecke, Spectral properties of carbon black. J. Non Cryst. Solids 258, 161–179 (1999)CrossRefGoogle Scholar
  17. 17.
    J.P. Abrahamson, Pulsed laser annealing of carbon (The Pennsylvania State University, State College, 2017)Google Scholar
  18. 18.
    K.A. Thomson, K.P. Geigle, M. Köhler, G.J. Smallwood, D.R. Snelling, Optical properties of pulsed laser heated soot. Appl. Phys. B 104, 307–319 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    F. Goulay, P.E. Schrader, X. López-Yglesias, H.A. Michelsen, A data set for validation of models of laser-induced incandescence from soot: temporal profiles of LII signal and particle temperature. Appl. Phys. B 112, 287–306 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    B. Apicella, M. Alfè, R. Barbella, A. Tregrossi, A. Ciajolo, Aromatic structures of carbonaceous materials and soot inferred by spectroscopic analysis. Carbon 42, 1583–1589 (2004)CrossRefGoogle Scholar
  21. 21.
    D.E. Rosner, P. Tandon, Prediction and correlation of accessible area of large multiparticle aggregates. AIChE J. 40, 1167–1182 (1994)CrossRefGoogle Scholar
  22. 22.
    A.V. Filippov, M. Zurita, D.E. Rosner, Fractal-like aggregates: relation between morphology and physical properties. J. Colloid Interface Sci. 229, 261–273 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    C.M. Sorensen, Light scattering by fractal aggregates: a review. Aerosol Sci. Technol. 35, 648–687 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    F. Liu, G.J. Smallwood, D.R. Snelling, Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers. J. Quant. Spectrosc. Radiat. Transf. 93, 301–312 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame. Int. J. Heat Mass Transf. 49, 777–788 (2006)CrossRefGoogle Scholar
  26. 26.
    R.P. Bambha, H.A. Michelsen, Effects of aggregate morphology and size on laser-induced incandescence and scattering from black carbon (mature soot). J. Aerosol Sci. 88, 159–181 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    H. Bladh et al., Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence. Proc. Combust. Inst. 35, 1843–1850 (2015)CrossRefGoogle Scholar
  28. 28.
    R. Bambha, M. Dansson, P. Schrader, H. Michelsen, Effects of volatile coatings on the laser-induced incandescence of soot. Appl. Phys. B Lasers Opt. 112, 343–358 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    S.-A. Kuhlmann, J. Reimann, S. Will, On heat conduction between laser-heated nanoparticles and a surrounding gas. J. Aerosol Sci. 37, 1696–1716 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    H.A. Michelsen, Derivation of a temperature-dependent accommodation coefficient for use in modeling laser-induced incandescence of soot. Appl. Phys. B 94, 103 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    F.O. Goodman, Thermal accommodation coefficients. J. Phys. Chem. 84, 1431–1445 (1980)CrossRefGoogle Scholar
  32. 32.
    H. Bladh, J. Johnsson, P.-E. Bengtsson, Influence of spatial laser energy distribution on evaluated soot particle sizes using two-colour laser-induced incandescence in a flat premixed ethylene/air flame. Appl. Phys. B Lasers Opt. 96, 645–656 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    J.P. Abrahamson, M. Singh, J.P. Mathews, R.L. Vander Wal, Pulsed laser annealing of carbon black. Carbon 124, 380–390 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII). Combust. Flame 120, 439–450 (2000)CrossRefGoogle Scholar
  35. 35.
    M. Hofmann, B. Kock, C. Schulz, A web-based interface for modeling laser-induced incandescence (LIISim). in Proc. Eur. Combust. Meet (2007)Google Scholar
  36. 36.
    B.J. McCoy, C.Y. Cha, Transport phenomena in the rarefied gas transition regime. Chem. Eng. Sci. 29, 381–388 (1974)CrossRefGoogle Scholar
  37. 37.
    N.A. Fuchs, On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Geofis. Pura e Appl. 56, 185–193 (1963)ADSCrossRefGoogle Scholar
  38. 38.
    F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII. Appl. Phys. B 83, 383 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    S. Will, S. Schraml, K. Bader, A. Leipertz, Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence. Appl. Opt. 37, 5647–5658 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    R. Mansmann et al., LIISim: a modular signal processing toolbox for laser-induced incandescence measurements. Appl. Phys. B 124, 69 (2018)CrossRefGoogle Scholar
  41. 41.
    E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Determination of small soot particles in the presence of large ones from time-resolved laser-induced incandescence. Appl. Phys. B 118, 169–183 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    H.A. Michelsen et al., Particle formation from pulsed laser irradiation of soot aggregates studied with a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission X-ray microscope. Appl. Opt. 46, 959–977 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    W.D. Bachalo, S.V. Sankar, G.J. Smallwood, D.R. Snelling, Development of the laser-induced incandescence method for the reliable characterization of particulate emissions. in Proc. 11th Int. Symp. Appl. Laser Tech. to Fluid Mech. (2002)Google Scholar
  44. 44.
    J. Johnsson, H. Bladh, N.-E. Olofsson, P.-E. Bengtsson, Influence of soot aggregate structure on particle sizing using laser-induced incandescence: importance of bridging between primary particles. Appl. Phys. B Lasers Opt. 112, 321–332 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    H. Bladh et al., Influence of soot particle aggregation on time-resolved laser-induced incandescence signals. Appl. Phys. B 104, 331–341 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    M. Schnaiter et al., UV–Vis–NIR spectral optical properties of soot and soot-containing aerosols. J. Aerosol Sci. 34, 1421–1444 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    S. Bejaoui, R. Lemaire, P. Desgroux, E. Therssen, Experimental study of the E(m, λ)/E(m, 1064) ratio as a function of wavelength, fuel type, height above the burner and temperature. Appl. Phys. B 116, 313–323 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    U.O. Köylü, G.M. Faeth, Radiative properties of flame-generated soot. J. Heat Transf. 115, 409–417 (1993)CrossRefGoogle Scholar
  49. 49.
    G. Cléon, T. Amodeo, A. Faccinetto, P. Desgroux, Laser induced incandescence determination of the ratio of the soot absorption functions at 532 nm and 1064 nm in the nucleation zone of a low pressure premixed sooting flame. Appl. Phys. B Lasers Opt. 104, 297–305 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    J. Simonsson, N.-E. Olofsson, S. Török, P.-E. Bengtsson, H. Bladh, Wavelength dependence of extinction in sooting flat premixed flames in the visible and near-infrared regimes. Appl. Phys. B Lasers Opt. 119, 657–667 (2015)CrossRefGoogle Scholar
  51. 51.
    P. Minutolo, G. Gambi, A. D’Alessio, The optical band gap model in the interpretation of the UV-visible absorption spectra of rich premixed flames. in Twenty-Sixth International Symposium on Combustion, vols. 1 and 2 (Combustion Institute, 1996), pp. 951–957Google Scholar
  52. 52.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627–637 (1966)CrossRefGoogle Scholar
  53. 53.
    J.H. Miller, J.D. Herdman, C.D.O. Green, E.M. Webster, Experimental and computational determinations of optical band gaps for PAH and soot in a N2-diluted, ethylene/air non-premixed flame. Proc. Combust. Inst. 34, 3669–3675 (2013)CrossRefGoogle Scholar
  54. 54.
    E.M. Adkins, J.H. Miller, Extinction measurements for optical band gap determination of soot in a series of nitrogen-diluted ethylene/air non-premixed flames. Phys. Chem. Chem. Phys. 17, 2686–2695 (2015)CrossRefGoogle Scholar
  55. 55.
    J. Robertson, E.P. O’Reilly, Electronic and atomic structure of amorphous carbon. Phys. Rev. B 35, 2946–2957 (1987)ADSCrossRefGoogle Scholar
  56. 56.
    A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Science Publishers, Amsterdam, 1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.John and Willie Leone Department of Energy and Mineral Engineering and the EMS Energy InstituteThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations