Advertisement

Applied Physics B

, 124:121 | Cite as

Laser-based measurements of pressure broadening and pressure shift coefficients of combustion-relevant absorption lines in the near-infrared region

  • Sebastian Bürkle
  • Nicole Walter
  • Steven WagnerEmail author
Article

Abstract

A set of high-resolution absorption spectrometers based on TDLAS was used to determine the impact of combustion-relevant gases on the pressure shift and broadening of H2O, CO2, C2H2 and CH4 absorption lines in the near-infrared spectral region. In particular, self- and foreign-broadening coefficients induced by CO2, N2, O2, air, C2H2 and CH4 were measured. The absorption lines under investigation are suitable to measure the respective species in typical combustion environments via laser absorption spectroscopy. Additionally, species-dependent self- and foreign-induced pressure shift coefficients were measured and compared to the literature. The experiments were performed in two specifically designed absorption cells over a wide pressure range from 5 to 180 kPa. Different sources of uncertainty were identified and quantified to achieve relative measurement uncertainties of 0.7–1.5% for broadening coefficients and 0.6–1.6% for pressure shift coefficients.

Notes

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft for its support through CRC/Transregio 150 “Turbulent, chemically reactive multi-phase flows near walls”.

References

  1. 1.
    IEA, World energy outlook (2016).  https://doi.org/10.1787/weo-2016-en (ISBN: 9789264264946)
  2. 2.
    H. Hao, Y. Geng, J. Sarkis, Energy 101, 121 (2016)CrossRefGoogle Scholar
  3. 3.
    R.K. Hanson, Proc. Combust. Inst. 33, 1, (2011)CrossRefGoogle Scholar
  4. 4.
    B. Peterson, E. Baum, B. Böhm, V. Sick, A. Dreizler, Proc. Combust. Inst. 35, 2923 (2015)CrossRefGoogle Scholar
  5. 5.
    D. Zabrodiec, L. Becker, J. Hees, A. Maßmeyer, M. Habermehl, O. Hatzfeld, A. Dreizler, R. Kneer, Combust. Sci. Technol. 189, 1751 (2017)CrossRefGoogle Scholar
  6. 6.
    E. Baum, B. Peterson, B. Böhm, A. Dreizler, Flow Turbul Combust 92, 269 (2014)CrossRefGoogle Scholar
  7. 7.
    L.A. Kranendonk, X. An, A.W. Caswell, R.E. Herold, S.T. Sanders, R. Huber, J.G. Fujimoto, Y. Okura, Y. Urata, Opt. Express 15, 15115 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, V. Ebert, Opt. Express 21, 19951 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    S. Bürkle, L. Biondo, C.-P. Ding, R. Honza, V. Ebert, B. Böhm, S. Wagner, In-Cylinder Temperature Measurements in a Motored IC Engine using TDLAS. Flow Turbul. Combust. (2018).  https://doi.org/10.1007/s10494-017-9886-y Google Scholar
  10. 10.
    M.E. Webber, J. Wang, S.T. Sanders, D.S. Baer, R.K. Hanson, Proc. Combust. Inst. 28, 407 (2000)CrossRefGoogle Scholar
  11. 11.
    I.A. Schultz, C.S. Goldenstein, R. Mitchell Spearrin, J.B. Jeffries, R.K. Hanson, R.D. Rockwell, C.P. Goyne, J. Propuls. Power 30, 1595 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Balusamy, M.M. Kamal, S.M. Lowe, B. Tian, Y. Gao, S. Hochgreb, Exp. Fluids 56, 1 (2015)CrossRefGoogle Scholar
  13. 13.
    A. Sepman, Y. Ögren, M. Gullberg, H. Wiinikka, Appl. Phys. B 122, 89 (2016)CrossRefGoogle Scholar
  14. 14.
    K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, Proc. Combust. Inst. 34, 3593 (2013)CrossRefGoogle Scholar
  15. 15.
    H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    K.L. Mackay, A. Chanda, G. Mackay, J.T. Pisano, T.D. Durbin, K. Crabbe, T. Smith, J. Appl. Spectrosc. 83, 627 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    S. Balusamy, A. Schmidt, S. Hochgreb, Exp. Fluids 54, 159 (2013)CrossRefGoogle Scholar
  18. 18.
    C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Prog. Energy Combust. Sci. 60, 132 (2017)CrossRefGoogle Scholar
  19. 19.
    I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.-M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.-A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.-M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J.V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, J. Quant. Spectrosc. Radiat. Transf. 203, 3 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111, 2139 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    J. Hees, D. Zabrodiec, A. Massmeyer, S. Pielsticker, B. Gövert, M. Habermehl, O. Hatzfeld, R. Kneer, Combust. Flame 172, 289 (2016)CrossRefGoogle Scholar
  22. 22.
    I. Glassman, Symp. (Int.) Combust. 22, 295 (1989)CrossRefGoogle Scholar
  23. 23.
    P. Lindstedt, Symp. (Int.) Combust. 27, 269 (1998)CrossRefGoogle Scholar
  24. 24.
    F. Stritzke, S. van der Kley, A. Feiling, A. Dreizler, S. Wagner, Opt. Express 25, 8180 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    J. Humlíček, J. Quant. Spectrosc. Radiat. Transf. 21, 309 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    A. Pogány, S. Wagner, O. Werhahn, V. Ebert, Appl. Spectrosc. 69, 257 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    R.S.M. Chrystie, E.F. Nasir, A. Farooq, Appl. Phys. B 120, 317 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    O. Diemel, J. Pareja, A. Dreizler, S. Wagner, Appl. Phys. B 123, 545 (2017)CrossRefGoogle Scholar
  29. 29.
    U. KC, E.F. Nasir, A. Farooq, Appl. Phys. B 120, 223 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    X. Zhou, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 81, 711 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    S. Schäfer, M. Mashni, J. Sneider, A. Miklós, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, Appl. Phys. B Lasers Opt. 66, 511 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    A. Pogány, A. Klein, V. Ebert, J. Quant. Spectrosc. Radiat. Transf. 165, 108 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    S. Bürkle, A. Dreizler, V. Ebert, S. Wagner, Fuel 212, 302 (2018)CrossRefGoogle Scholar
  34. 34.
    S. Bürkle, L.G. Becker, A. Dreizler, S. Wagner, Experimental investigation of the flue gas thermochemical composition of an oxy-fuel swirl burner. Fuel 231, 61–72 (2018).  https://doi.org/10.1016/j.fuel.2018.05.039 CrossRefGoogle Scholar
  35. 35.
    S. Wagner, B.T. Fisher, J.W. Fleming, V. Ebert, Proc. Combust. Inst. 32, 839 (2009)CrossRefGoogle Scholar
  36. 36.
    G. Durry, V. Zeninari, B. Parvitte, T. Le barbu, F. Lefevre, J. Ovarlez, R.R. Gamache, J. Quant. Spectrosc. Radiat. Transf. 94, 387 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    R.A. Toth, Appl. Opt. 33, 4851 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    S. Moretti, Gianfrani, Ciurylo, J. Mol. Spectrosc. 205, 20 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    O. Witzel, V. Ebert, In-situ-Laserabsorptionsspektroskopie zur µs-schnellen Bestimmung von Spezieskonzentrationen und Temperaturen in Verbrennungsmotoren (Darmstadt 2013)Google Scholar
  40. 40.
    S. Hunsmann, S. Wagner, H. Saathoff, O. Möhler, U. Schurath, V. Ebert, Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1.4 μm-Band. VDI Berichte 1959, 149–164 (2006)Google Scholar
  41. 41.
    C. Camy-Peyret, J.M. Flaud, R.A. Toth, J. Mol. Spectrosc. 67, 117 (1977)ADSCrossRefGoogle Scholar
  42. 42.
    R.A. Toth, J. Quant. Spectrosc. Radiat. Transf. 94, 51 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    I.V. Ptashnik, K.M. Smith, K.P. Shine, J. Mol. Spectrosc. 232, 186 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    R.A. Toth, L.R. Brown, C.E. Miller, V.M. Devi, D.C. Benner, J. Mol. Spectrosc. 239, 221 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    L. Régalia-Jarlot, V. Zéninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, G. Durry, J. Quant. Spectrosc. Radiat. Transf. 101, 325 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    G. Casa, D.A. Parretta, A. Castrillo, R. Wehr, L. Gianfrani, J. Chem. Phys. 127, 84311 (2007)CrossRefGoogle Scholar
  47. 47.
    O.L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N.F. Zobov, J.T. Hodges, J. Tennyson, Phys. Rev. Lett. 114, 243001 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    R.A. Toth, C.E. Miller, V. Malathy Devi, D.C. Benner, L.R. Brown, J. Mol. Spectrosc. 246, 133 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    L. Rosenmann, J.M. Hartmann, M.Y. Perrin, J. Taine, Appl. Opt. 27, 3902 (1988)ADSCrossRefGoogle Scholar
  50. 50.
    R. El Hachtouki, J.V. Auwera, J. Mol. Spectrosc. 216, 355 (2002)ADSCrossRefGoogle Scholar
  51. 51.
    S.W. Arteaga, C.M. Bejger, J.L. Gerecke, J.L. Hardwick, Z.T. Martin, J. Mayo, E.A. McIlhattan, J.-M.F. Moreau, M.J. Pilkenton, M.J. Polston, B.T. Robertson, E.N. Wolf, J. Mol. Spectrosc. 243, 253 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    P. Minutolo, C. Corsi, F. D’Amato, M. de Rosa, Eur. Phys. J. D 17, 175 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    M. Gharavi, S.G. Buckley, J. Mol. Spectrosc. 229, 78 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    V. Zéninari, B. Parvitte, D. Courtois, V.A. Kapitanov, Y.N. Ponomarev, Appl. Phys. B 72, 953 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    G. Dufour, D. Hurtmans, A. Henry, A. Valentin, M. Lepère, J. Mol. Spectrosc. 221, 80 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    A.V. Nikitin, O.M. Lyulin, S.N. Mikhailenko, V.I. Perevalov, N.N. Filippov, I.M. Grigoriev, I. Morino, T. Yokota, R. Kumazawa, T. Watanabe, J. Quant. Spectrosc. Radiat. Transf. 111, 2211 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    P. Werle, R. Mücke, F. Slemr, Appl. Phys. B 57, 131 (1993)ADSCrossRefGoogle Scholar
  58. 58.
    W. Walcher, M. Elbel, Praktikum der Physik. Mit 88 Versuchen, 14 Tabellen im Text, einem Tabellenanhang und einem ausklappbaren Periodensystem der Elemente (Vieweg + Teubner, Wiesbaden, 2009)Google Scholar
  59. 59.
    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    P. Varanasi, J. Quant. Spectrosc. Radiat. Transf. 11, 1711 (1971)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Reactive Flows and DiagnosticsTechnische Universität DarmstadtDarmstadtGermany
  2. 2.High Temperature Process DiagnosticsTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations