Applied Physics B

, 124:114 | Cite as

High-power all-fiber ultra-low noise laser

  • Jian Zhao
  • Germain Guiraud
  • Christophe Pierre
  • Florian Floissat
  • Alexis Casanova
  • Ali Hreibi
  • Walid Chaibi
  • Nicholas Traynor
  • Johan Boullet
  • Giorgio Santarelli


High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches − 160 dBc/Hz between 3 and 20 kHz.



This work is supported Agence Nationale de la Recherche (ANR) (ANR14 LAB05 0002 01) and Conseil Régional d’Aquitaine (2014-IR60309-00003281); the author J. Zhao acknowledges Post-doctoral scholarship Grant from La Fondation Franco-Chinoise pour la Science et ses Applications (FFCSA); European Gravitational Observatory (EGO). We thank Dr. Benoit Gouhier and Dr. Sergio Rota-Rodrigo for their comments on the paper.


  1. 1.
  2. 2.
    LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 119, 141101 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    T.A. Savard, K.M. O’Hara, J.E. Thomas, Phys. Rev. A 56, R1095 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    A. Omran, M. Boll, T.A. Hilker, K. Kleinlein, G. Salomon, I. Bloch, C. Gross, Phys. Rev. Lett. 115, 263001 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, S. Bize, New J. Phys. 18, 113002 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R.L. Savage, F. Seifert, P. Wessels, L. Winkelmann, B. Willke, Opt. Express 20, 10617–10634 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    C. Basu, P. Weßels, J. Neumann, D. Kracht, Opt. Lett. 37, 2862–2864 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    K. Takeno, T. Ozeki, S. Moriwaki, N. Mio, Opt. Lett. 30, 2110–2112 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    C.L. Mueller, M.A. Arain, G. Ciani, R.T. DeRosa, A. Effler, D. Feldbaum, V.V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E.J. King, K. Kokeyama, W.Z. Korth, R.M. Martin, A. Mullavey, J. Peold, V. Quetschke, D.H. Reitze, D.B. Tanner, C. Vorvick, L.F. Williams, G. Mueller, Rev. Sci. Instrum. 87, 014502 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    C. Robin, I. Dajani, B. Pulford, Opt. Lett. 39, 666–669 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    M. Karow, C. Basu, D. Kracht, J. Neumann, P. Wessels, Opt. Express 20, 5319–5324 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, Opt. Lett. 28, 1537–1539 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    L. Zhang, S. Cui, C. Liu, J. Zhou, Y. Feng, Opt. Express 21, 5456–5462 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    T. Theeg, C. Ottenhues, H. Sayinc, J. Neumann, D. Kracht, Opt. Lett. 41, 9–12 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, P. Zhou, Opt. Lett. 42, 1–4 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    J. Boullet, G. Guiraud, G. Santarelli, C. Vincont, S. Salort, C. Pierre, Multi-100W class, fully integrated, monolithic ytterbium-doped photonic-crystal fiber amplifier module. Proc. SPIE. 9730, 97300Q (2016). ADSCrossRefGoogle Scholar
  18. 18.
  19. 19.
    G. Guiraud, N. Traynor, G. Santarelli, High-power and low-intensity noise laser at 1064 nm. Opt. Lett. 41, 4040–4043 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    H.J. Otto, N. Modsching, C. Jauregui, J. Limpert, A. Tünnermann, Opt. Express 23, 15265–15277 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    B. Ward, Opt. Express 24, 3488–3501 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Virgo Collaboration, Technical Report VIR-0128A-12 (2012)Google Scholar
  23. 23.
    S. Ricciardi, P. Mosca, L. Maddaloni, M. Santamaria, P. De Rosa, De Natale, Opt. Express 21, 14618–14626 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    M. Tröbs, S. Barke, T. Theeg, D. Kracht, G. Heinzel, K. Danzmann, Opt. Lett. 35, 435–437 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    N. Chiodo, K. Djerroud, O. Acef, A. Clairon, P. Wolf, Appl. Opt. 52, 7342–7351 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    G. Zhao, F. Guiraud, B. Floissat, S. Gouhier, N. Rota-Rodrigo, G. Traynor, Santarelli, Opt. Express 25, 357–366 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    H. Tünnermann, J. Neumann, D. Kracht, P. Weßels, Opt. Express 20, 13539–13550 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    S. Rota-Rodrigo, B. Gouhier, M. Laroche, J. Zhao, B. Canuel, A. Bertoldi, P. Bouyer, N. Traynor, B. Cadier, T. Robin, G. Santarelli, Opt. Lett. 42, 4557–4560 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    B. Willke, K. Danzmann, M. Frede, P. King, D. Kracht, P. Kwee, O. Punken, R. Savage, B. Schulz, F. Seifert, C. Veltkamp, S. Wagner, P. Weßels, L. Winkelmann, Class. Quantum Grav. 25, 114040 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    P. Junker, B. Oppermann, Willke, Opt. Lett. 42, 755–758 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    J. Rollins, D. Ottaway, M. Zucker, R. Weiss, R. Abbott, Opt. Lett. 29, 1876–1878 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    N. Mio, T. Ozeki, K. Machida, S. Moriwaki, Jpn. J. Appl. Phys. 46, 5338–5341 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    R.S. Abbott, P.J. King, Rev. Sci. Instrum. 72, 1346–1349 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    L.Wei, Ph.D. dissertation (2015),
  35. 35.
    F. Wei, C.N. Cleva, Man, Opt. Lett. 41, 5817–5820 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    J. Aasi et al., LIGO Collaboration, Class. Quantum Grav. 32, 074001 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    F. Acernese et al., Virgo Collaboration, Class. Quantum Grav. 32, 024001 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jian Zhao
    • 1
    • 6
  • Germain Guiraud
    • 1
    • 2
  • Christophe Pierre
    • 3
  • Florian Floissat
    • 1
  • Alexis Casanova
    • 1
    • 5
  • Ali Hreibi
    • 4
  • Walid Chaibi
    • 4
  • Nicholas Traynor
    • 2
  • Johan Boullet
    • 3
  • Giorgio Santarelli
    • 1
  1. 1.Laboratoire Photonique, Numérique et Nanosciences (LP2N)IOGS-CNRS-Université de BordeauxTalenceFrance
  2. 2.Azur Light SystemsPessacFrance
  3. 3.ALPhANOVTalenceFrance
  4. 4.Laboratoire ARTEMISUMR 7250 Université Côte d’Azur-CNRS-Observatoire de la Côte d’AzurNiceFrance
  5. 5.Amplitude-SystemesPessacFrance
  6. 6.MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of PhysicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations