Advertisement

Applied Physics B

, 124:100 | Cite as

Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2–6.7 µm

  • S. Chaitanya Kumar
  • J. Canals Casals
  • S. Parsa
  • K. T. Zawilski
  • P. G. Schunemann
  • M. Ebrahim-Zadeh
Article
  • 195 Downloads
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

We report a high-average-power picosecond optical parametric oscillator (OPO) tunable in the mid-infrared (mid-IR) based on CdSiP2 synchronously pumped by an Yb-fiber laser at ~ 80 MHz repetition rate. Successful operation of this high-repetition-rate singly-resonant picosecond OPO has been enabled by the improved CSP crystal quality over a long interaction length. The OPO can be tuned across 1264–1284 nm in the near-IR signal and 6205–6724 nm in the mid-IR idler by temperature tuning the CSP crystal over 39–134 °C. By deploying a 5% output coupler for the resonant signal, we have extracted up to 44 mW of average power in the near-IR and up to 95 mW of non-resonant idler power at 6205 nm at 6.3% total conversion efficiency, with > 50 mW over > 55% of the mid-IR tuning range. We have investigated temperature-tuning characteristics of the OPO and compared the data with the theoretical calculations using the recent Sellmeier and thermo-optic coefficients for CdSiP2. The signal pulses from the OPO exhibit a Gaussian pulse duration of 19 ps centered at 1284 nm. We have also studied the output power stability of the OPO, resulting in a passive stability better than 1.9% rms for the near-IR signal and 2.4% rms for the mid-IR idler, measured over > 17 h, with both beams in high spatial quality.

Notes

Acknowledgements

We acknowledge the support from Spanish Ministry of Economy and Competitiveness (MINECO) (nuOPO, TEC2015-68234-R); European Commission (Horizon 2020 Framework Programme) (Project Mid-Tech, H2020-MSCA-ITN-2014); Generalitat de Catalunya (CERCA Programme); Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0522); Fundació Privada Cellex.

References

  1. 1.
    K.L. Vodopyanov, H. Graener, C.C. Phillips, Mid-infrared picosecond spectroscopy of MBE indium arsenide epilayers at 300 K. Semicond. Sci. Technol. 8, S300–S304 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    M. Mathez, P.J. Rodrigo, P. Tidemand-Lichtenberg, C. Pedersen, Upconversion imaging using short-wave infrared picosecond pulses. Opt. Lett. 42, 579–582 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371, 416–419 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    H. Okamoto, Picosecond transient infrared spectrum of 4-(dimethylamino)benzonitrile in the fingerprint region. J. Phys. Chem. A 104, 4182–4187 (1994)CrossRefGoogle Scholar
  5. 5.
    M. Ebrahim-Zadeh, Mid-infrared ultrafast and continuous-wave optical parametric oscillators. Solid State Mid Infrared Laser Sources 89, 179–218 (2003)Google Scholar
  6. 6.
    W. Shi, Q. Fang, X. Zhu, R.A. Norwood, N. Peyghambarian, Fiber lasers and their applications. Appl. Opt. 53, 6554–6568 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    M. Ebrahim-Zadeh, S. Chaitanya Kumar, Yb-fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet. IEEE J. Sel. Top. Quantum Electron. 20, 7600519 (2014)Google Scholar
  8. 8.
    M. Ebrahim-Zadeh, S. Chaitanya Kumar, K. Devi, Yb-fiber-laser-pumped continuous-wave frequency conversion sources from the mid-infrared to the ultraviolet. IEEE J. Sel. Top. Quantum Electron. 20, 0902823 (2014)Google Scholar
  9. 9.
    S.B. Mirov, V.V. Fedorov, D. Martyshkin, I.S. Moskalev, M. Mirov, S. Vasilyev, Progress in mid-IR lasers based on Cr and Fe-doped II–VI chalcogenides. IEEE J. Sel. Top. Quantum Electron. 21, 1601719 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Chaitanya Kumar, R. Das, G.K. Samanta, M. Ebrahim-Zadeh, Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator. Appl. Phys. B Lasers Opt. 102, 31–35 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    S. Chaitanya Kumar, A. Esteban-Martin, M. Ebrahim-Zadeh, Interferometric output coupling of ring optical oscillators. Opt. Lett. 36, 1068–1070 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    A. Aadhi, V. Sharma, N. Apurv Chaitanya, G.K. Samanta, Multi-gigahertz, femtosecond airy beam optical parametric oscillator pumped at 78 MHz. Sci. Rep. 7, 43913 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    P.G. Schunemann, K.T. Zawilski, L.A. Pomeranz, D.J. Creeden, P.A. Budni, Advances in nonlinear optical crystals for mid-infrared coherent sources. J. Opt. Soc. Am. B 33, D36-D43 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Chaitanya Kumar, M. Ebrahim-Zadeh, Yb-fiber-based, high-average-power, high-repetition-rate, picosecond source at 2.1 µm. Laser Photonics Rev. 10, 970–977 (2016)CrossRefGoogle Scholar
  15. 15.
    K.T. Zawilski, P.G. Schunemann, T.M. Pollak, D.E. Zelmon, N.C. Fernelius, F.K. Hopkins, Growth and characterization of large CdSiP2 single crystals. J. Cryst. Growth 312, 1127–1132 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Zhang, D.T. Reid, S. Chaitanya Kumar, M. Ebrahim-Zadeh, P.G. Schunemann, K.T. Zawilski, C.R. Howle, Femtosecond-laser pumped CdSiP2 optical parametric oscillator producing 100 MHz pulses centered at 6.2 µm. Opt. Lett. 38, 5110–5113 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    S. Chaitanya Kumar, J. Krauth, A. Steinmann, K.T. Zawilski, P.G. Schunemann, H. Giessen, M. Ebrahim-Zadeh, High-power femtosecond mid-infrared optical parametric oscillator at 7 µm based on CdSiP2. Opt. Lett. 40, 1398–1401 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    V. Ramaiah-Badarla, S. Chaitanya Kumar, A. Esteban-Martin, K. Devi, K.T. Zawilski, P.G. Schunemann, M. Ebrahim-Zadeh, Ti:sapphire-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2. Opt. Lett. 41, 1708–1711 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    S. Chaitanya Kumar, A. Esteban-Martin, A. Santana, K.T. Zawilski, P.G. Schunemann, M. Ebrahim-Zadeh, Pump-tuned deep infrared femtosecond optical parametric oscillator across 6–7 µm based on CdSiP2. Opt. Lett. 41, 3355–3358 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    C.F. O’Donnell, S. Chaitanya Kumar, K.T. Zawilski, P.G. Schunemann, M. Ebrahim-Zadeh, Critically phase-matched Ti:sapphire-laser-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2. Opt. Lett. 43, 1507–1510 (2018)Google Scholar
  21. 21.
    S. Chaitanya Kumar, P.G. Schunemann, K.T. Zawilski, M. Ebrahim-Zadeh, Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2. J. Opt. Soc. Am. B 33, D44–D56 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Peremans, D. Lis, F. Cecchet, P.G. Schunemann, K.T. Zawilski, V. Petrov, Noncritical singly resonant synchronously pumped OPO for generation of picosecond pulses in the mid-infrared near 6.4 µm. Opt. Lett. 34, 3053–3055 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K.T. Zawilski, P.G. Schunemann, M. Ebrahim-Zadeh, Compact, 1.5 mJ, 450 MHz, CdSiP2 picosecond optical parametric oscillator near 6.3 µm. Opt. Lett. 36, 3236–3238 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    S. Chaitanya Kumar, M. Jelínek, M. Baudisch, K.T. Zawilski, P.G. Schunemann, V. Kubeček, J. Biegert, M. Ebrahim-Zadeh, Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP2. Opt. Express 20, 15703–15709 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    N. Hendaoui, A. Peremans, P.G. Schunemann, K.T. Zawilski, V. Petrov, Synchronously pumped OPO for picosecond pulse generation in the mid-infrared near 6.45 µm using AgGaS2 and CdSiP2: a comparative study. Laser Phys. 23, 085401 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    O. Chalus, P.G. Schunemann, K.T. Zawilski, J. Biegert, M. Ebrahim-Zadeh, Optical parametric generation in CdSiP2. Opt. Lett. 35, 4142–4144 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    G. Marchev, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, P.G. Schunemann, K.T. Zawilski, 1064 nm pumped CdSiP2 optical parametric oscillator generating sub-300 ps pulses near 6.15 µm at 1–10 kHz repetition rates. Opt. Commun. 291, 326–328 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    A. Tyazhev, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, G. Marchev, P.G. Schunemann, K.T. Zawilski, Narrowband, mid-infrared, seeded optical parametric generator based on non-critical CdSiP2 pumped by 120 ps, single longitudinal mode 1064 nm pulses. Appl. Phys. B 112, 453–456 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    O. Kokabee, A. Esteban-Martin, M. Ebrahim-Zadeh, Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator. Opt. Lett. 35, 3210–3212 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    S. Chaitanya Kumar, K.T. Zawilski, P.G. Schunemann, M. Ebrahim-Zadeh, High-repetition-rate, deep-infrared, picosecond optical parametric oscillator based on CdSiP2. Opt. Lett. 42, 3606–3609 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    V. Kemlin, B. Boulanger, V. Petrov, P. Segonds, B. Ménaert, P.G. Schunneman, K.T. Zawilski, Nonlinear, dispersive, and phase-matching properties of the new chalcopyrite CdSiP2. Opt. Mater. Express 1, 1292–1300 (2011)CrossRefGoogle Scholar
  32. 32.
    P.G. Schunemann, L.A. Pomeranz, K.T. Zawilski, J. Wei, L.P. Gonzalez, S. Guha, T.M. Pollak, Efficient mid-infrared optical parametric oscillator based on CdSiP2. In Advances in Optical Materials, Conference Program and Technical Digest, San Jose, California, October 14–15, 2009, Paper AWA3 Google Scholar
  33. 33.
    K. Kato, N. Umemura, V. Petrov, Sellmeier and thermo-optic dispersion formulas for CdSiP2. J. Appl. Phys. 109, 116104 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Radiantis, Polígono Industrial Camí RalGavàSpain
  2. 2.ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyCastelldefelsSpain
  3. 3.BAE Systems IncorporatedNashuaUSA
  4. 4.Institucio Catalana de Recerca i Estudis Avancats (ICREA)BarcelonaSpain

Personalised recommendations