Applied Physics B

, 124:77 | Cite as

Wavelength modulation spectroscopy near 5 \(\upmu\)m for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor

  • Daniel D. Lee
  • Fabio A. Bendana
  • S. Alexander Schumaker
  • R. Mitchell Spearrin
Article
  • 66 Downloads
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

A laser absorption sensor was developed for carbon monoxide (CO) sensing in high-pressure, fuel-rich combustion gases associated with the internal conditions of hydrocarbon-fueled liquid bipropellant rockets. An absorption feature near 4.98 \(\upmu\)m, comprised primarily of two rovibrational lines from the P-branch of the fundamental band, was selected to minimize temperature sensitivity and spectral interference with other combustion gas species at the extreme temperatures (> 3000 K) and pressures (> 50 atm) in the combustion chamber environment. A scanned wavelength modulation spectroscopy technique (1f-normalized 2f detection) is utilized to infer species concentration from CO absorption, and mitigate the influence of non-absorption transmission losses and noise associated with the harsh sooting combustor environment. To implement the sensing strategy, a continuous-wave distributed-feedback (DFB) quantum cascade laser (QCL) was coupled to a hollow-core optical fiber for remote mid-infrared light delivery to the test article, with high-bandwidth light detection by a direct-mounted photovoltaic detector. The method was demonstrated to measure time-resolved CO mole fraction over a range of oxidizer-to-fuel ratios and pressures (20–70 atm) in a single-element-injector RP-2-GOx rocket combustor.

Notes

Acknowledgements

This work was sponsored by the Air Force Research Laboratory in Edwards, CA under Award No. 16-EPA-RQ-09. The authors thank Dr. Ed Coy and Dr. Steve Danczyk of AFRL for their support in conducting field measurements.

References

  1. 1.
    Philip G. Hill, Carl R. Peterson, Mechanics and thermodynamics of propulsion. 2nd edn. (Addison-Wesley Publishing Co, Reading, 1992)Google Scholar
  2. 2.
    Andrew W. Caswell, Scott T. Sanders, Martin J. Chiaverini, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2005)Google Scholar
  3. 3.
    Amanda S. Makowiecki, Torrey R. Hayden, Michael R. Nakles, Nickolas H. Pilgram, Natalia A. MacDonald, William A. Hargus, Gregory B. Rieker, 53rd AIAA/SAE/ASEE Joint Propulsion Conference (2017)Google Scholar
  4. 4.
    J. Locke, S. Pal, R. Woodward, R. Santoro, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011)Google Scholar
  5. 5.
    H. Zeng, F. Li, X. Yu, D. Ou, L. Chen, Appl. Opt. J. 57 (2018)Google Scholar
  6. 6.
    Andrew W. Caswell, K. Rein Scott, T. Sanders, T. Kraetschmer, S. Roy, Dale T. Shouse, James R. Gord, Appl. Opt. 49, 4963 (2010)Google Scholar
  7. 7.
    S. Christopher, R. Goldenstein, M. Spearrin, Jay B. Jeffries, Ronald K. Hanson, Proc. Combust. Inst. 35, 3739–3747 (2015)Google Scholar
  8. 8.
    R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, R. K. Hanson. Appl. Opt. J. (2014)Google Scholar
  9. 9.
    Edward B. Coy. 53rd AIAA Aerosp. Sci. Meeting J. (2015)Google Scholar
  10. 10.
    Ronald K. Hanson, R. Mitchell Spearrin, Christopher S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, New York, 2016)Google Scholar
  11. 11.
    S. Christopher, R. Goldenstein, M. Spearrin, Jay B. Jeffries, Ronald K. Hanson, Progr. Energy Combust. Sci. 60, 132–176 (2017)Google Scholar
  12. 12.
    G. Mark Allen, Measurement Sci. Technol. 9, 545–562 (1998)Google Scholar
  13. 13.
    K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, Proc. Combust. Inst. 34, 3593–3601 (2013)CrossRefGoogle Scholar
  14. 14.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 5546 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    R.M. Spearrin, W. Ren, J.B. Jeffries, R.K. Hanson, Appl. Phys. B: Lasers Opt. 116, 855–865 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    C.S. Goldenstein, V.A. Miller, R. Mitchell Spearrin, Christopher L. Strand, J. Quant. Spectrosc. Radiat. Transfer 200, 249–257 (2017)Google Scholar
  18. 18.
    J.M. Hartmann, L. Rosenmann, M.Y. Perrin, J. Taine, Appl. Opt. 27, 3063 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45, 1052 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    K. Sun, X. Chao, R. Sur, C. S. Goldenstein, J. B. Jeffries, R. K. Hanson. Measurement Sci. Technol. 24 (2013)Google Scholar
  21. 21.
    Jason M. Kriesel, Nahum Gat, Bruce E. Bernacki, Rebecca L. Erikson, Bret D. Cannon, Tanya L. Myers, Carlos M. Bledt, James A, Harrington. Hollow core fiber optics for mid-wave and long-wave infrared spectroscopy. Vol. 8018 (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Daniel D. Lee
    • 1
  • Fabio A. Bendana
    • 1
  • S. Alexander Schumaker
    • 2
  • R. Mitchell Spearrin
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of California Los AngelesLos AngelesUSA
  2. 2.U.S. Air Force Research LaboratoryEdwards Air Force BaseKern CountyUSA

Personalised recommendations