Advertisement

Applied Physics B

, 124:69 | Cite as

LIISim: a modular signal processing toolbox for laser-induced incandescence measurements

  • Raphael Mansmann
  • Tobias Terheiden
  • Philip Schmidt
  • Jan Menser
  • Thomas Dreier
  • Torsten Endres
  • Christof Schulz
Article

Abstract

Evaluation of measurement data for laser-induced incandescence (LII) is a complex process, which involves many processing steps starting with import of data in various formats from the oscilloscope, signal processing for converting the raw signals to calibrated signals, application of models for spectroscopy/heat transfer and finally visualization, comparison, and extraction of data. We developed a software tool for the LII community that helps to evaluate, exchange, and compare measurement data among research groups and facilitate the application of this technique by providing powerful tools for signal processing, data analysis, and visualization of experimental results. A common file format for experimental data and settings simplifies inter-laboratory comparisons. It can be further used to establish a public measurement database for standardized flames or other soot/synthetic nanoparticle sources. The open-source concept and public access to the software development should encourage other scientists to validate and further improve the implemented algorithms and thus contribute to the project. In this paper, we present the structure of the LIISim software including the materials database concept, signal-processing algorithms, and the implemented models for spectroscopy and heat transfer. With two application cases, we show the operation of the software how data can be analyzed and evaluated.

Notes

Acknowledgements

We gratefully thank Stanislav Musikhin (University of Duisburg-Essen, Germany) for testing the software and giving helpful feedback. We acknowledge funding through the German Research Foundation via SCHU1369/14 and SCHU1369/20.

Supplementary material

340_2018_6934_MOESM1_ESM.zip (8.3 mb)
Supplementary material 1 (ZIP 8457 KB)
340_2018_6934_MOESM2_ESM.zip (7.1 mb)
Supplementary material 2 (ZIP 7251 KB)
340_2018_6934_MOESM3_ESM.zip (6.9 mb)
Supplementary material 3 (ZIP 7063 KB)
340_2018_6934_MOESM4_ESM.zip (6.5 mb)
Supplementary material 4 (ZIP 6636 KB)
340_2018_6934_MOESM5_ESM.m (6 kb)
Supplementary material 5 (M 5 KB)

References

  1. 1.
    C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83(3), 333–354 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    H.A. Michelsen, C. Schulz, G.J. Smallwood, S. Will, Prog. Energy Combust. Sci. 51, 2–48 (2015)CrossRefGoogle Scholar
  3. 3.
    T. Dreier, C. Schulz, Powder Technol. 287, 226–238 (2016)CrossRefGoogle Scholar
  4. 4.
    A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci. 30(1), 71–87 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    R.L. Vander Wal, T.M. Ticich, J.R. West, Appl. Opt. 38(27), 5867–5879 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Murakami, T. Sugatani, Y. Nosaka, The Journal of Physical Chemistry A 109(40), 8994–9000 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    T. Lehre, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 30(2), 2585–2593, (2005)CrossRefGoogle Scholar
  8. 8.
    A. Eremin, E. Gurentsov, C. Schulz, J. Phys. D Appl. Phys. 41(5),  055203 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    S. Maffi, F. Cignoli, C. Bellomunno, S. De Iuliis, G. Zizak, Spectrochim. Acta Part B Atomic Spectrosc. 63(2), 202–209 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    T.A. Sipkens, R. Mansmann, K.J. Daun, N. Petermann, J.T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schulz, Appl. Phys. B 116(3), 623–636 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    K. Daun, J. Menser, R. Mansmann, S.T. Moghaddam, T. Dreier, C. Schulz, Journal of Quantitative Spectrosc. Radiat. Transfer 197, 3–11 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    J. Menser, K. Daun, T. Dreier, C. Schulz, Appl. Phys. B 122(11), 277 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    T.A. Sipkens, N.R. Singh, K.J. Daun, Appl. Phys. B 123(1), 14 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    F. Cignoli, S. De Iuliis, V. Manta, G. Zizak, Appl. Opt. 40(30), 5370–5378 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    D.R. Snelling, G.J. Smallwood, F. Liu, ÖL. Gülder, W.D. Bachalo, Appl. Opt. 44(31), 6773–6785 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42(12), 2021–2030 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    F. Goulay, P.E. Schrader, X. López-Yglesias, H.A. Michelsen, Appl. Phys. B 112(3), 287–306 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    R. Mansmann, T. Dreier, C. Schulz, Appl Opt 56(28), 7849–7860 (2017)CrossRefGoogle Scholar
  19. 19.
    F. Goulay, P.E. Schrader, H.A. Michelsen, Appl. Phys. B 100(3), 655–663 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    L.A. Melton, Appl. Opt. 23(13), 2201–2208 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    B. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147(1–2), 79–92 (2006)CrossRefGoogle Scholar
  22. 22.
    H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.E. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87(3), 503–521 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    C. Schulz, Laser-induced incandescence: quantitative interpretation, modelling, application, in Proceedings international bunsen discussion meeting and workshop, Duisburg, Germany, 25–28 September 2005, CEUR-WS.org. http://ceur-ws.org/Vol-195. Accessed 20 Jan 2018
  24. 24.
    R. Suntz, H. Bockhorn, Laser-induced incandescence: quantitative interpretation, modelling, applications in Proceedings 2nd international discussion meeting and workshop, Bad Herrenalb, Germany, 2–4 August 2006, CEUR-WS.org. http://ceur-ws.org/Vol-211. Accessed 20 Jan 2018
  25. 25.
    P. Desgroux, Laser-induced incandescence 2012, in Proceedings 5th international workshop on laser-induced incandescence, Le Touquet, France, 8–11 May 2012, CEUR-WS.org. http://ceur-ws.org/Vol-865. Accessed 20 Jan 2018
  26. 26.
    A. Nanthaamornphong, K. Morris, D.W.I. Rouson, H.A. Michelsen, A case study: agile development in the community laser-induced incandescence modeling environment (CLiiME), in 2013 5th international workshop on software engineering for computational science and engineering (SE-CSE) (2013), pp. 9–18Google Scholar
  27. 27.
    A. Nanthaamornphong, J.C. Carver, K. Morris, H.A. Michelsen, D.W.I. Rouson, Comput. Sci. Eng. 16(3), 36–46 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Hofmann, B. Kock, C. Schulz, A web-based interface for modeling laser-induced incandescence (LIISim), in Proceedings of the European Combustion Meeting,(Kreta, 2007)Google Scholar
  29. 29.
    A.M. Hofmann, PhD dissertation, Heidelberg University, 2006Google Scholar
  30. 30.
    M. Hofmann, B.F. Kock, T. Dreier, H. Jander, C. Schulz, Appl. Phys. B 90(3–4), 629–639 (2007)ADSGoogle Scholar
  31. 31.
    M. Leschowski, PhD dissertation, University of Duisburg-Essen, 2016Google Scholar
  32. 32.
    E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B 119(4), 745–763 (2015)CrossRefGoogle Scholar
  33. 33.
    E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B 118(2), 169–183 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    E. Cenker, K. Kondo, G. Bruneaux, T. Dreier, T. Aizawa, C. Schulz, Appl. Phys. B 119(4), 765–776 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Maffi, S. De Iuliis, F. Cignoli, G. Zizak, Appl. Phys. B 104(2), 357–366 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    S. De Iuliis, M. Urciuolo, A. Cammarota, S. Maffi, R. Chirone, G. Zizak, XXXIV Meeting of the Italian Section of the Combustion Institute (Rome, 2011)Google Scholar
  37. 37.
    S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 44(34), 7414–7423 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    T.A. Sipkens, P.J. Hadwin, S.J. Grauer, K.J. Daun, Appl Opt 56(30), 8436–8445 (2017)CrossRefGoogle Scholar
  39. 39.
    C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles. (John Wiley & Sons, 2008)Google Scholar
  40. 40.
    The Qt Framework, July 2015. http://www.qt.io
  41. 41.
    C. Boost, Libraries, November 2013. http://www.boost.org/
  42. 42.
    Qwt library, June 2016. http://qwt.sourceforge.net/
  43. 43.
    J.J. Moré, Numerical analysis (Springer, Berlin, Heidelberg, 1978), pp. 105–116CrossRefGoogle Scholar
  44. 44.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes 3rd edition: the art of scientific computing. (Cambridge University Press, Cambridge, 2007)MATHGoogle Scholar
  45. 45.
    ÖL. Gülder, D.R. Snelling, R.A. Sawchuk, Symp. (Int.) Combust. 26 (2), 2351–2358, (1996)CrossRefGoogle Scholar
  46. 46.
    B. Quay, T.W. Lee, T. Ni, R.J. Santoro, Combust. Flame 97(3), 384–392 (1994)CrossRefGoogle Scholar
  47. 47.
    J.R. Dormand, P.J. Prince, J. Comput. Appl. Math. 6(1), 19–26 (1980)MathSciNetCrossRefGoogle Scholar
  48. 48.
    R. Lemaire, M. Mobtil, Appl. Phys. B 119(4), 577–606 (2015)CrossRefGoogle Scholar
  49. 49.
    R. Mansmann, K. Thomson, G. Smallwood, T. Dreier, C. Schulz, Opt. Express 25(3), 2413 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Appl. Phys. B 96(4), 657–669 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    R.C. Aster, B. Borchers, C.H. Thurber, Parameter estimation and inverse problems. (Elsevier Acad. Press, Amsterdam, 2005)MATHGoogle Scholar
  52. 52.
    B.F. Kock, Zeitaufgelöste Laserinduzierte Inkandeszens (TR-LII): Partikelgrößenmessung in einem Dieselmotor und einem Gasphasenreaktor. (Cuvillier, Göttingen, 2006)Google Scholar
  53. 53.
    F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83(3), 355–382 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Combustion and Gas Dynamics - Reactive Fluids (IVG)Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-EssenDuisburgGermany

Personalised recommendations