Applied Physics B

, 124:64 | Cite as

Entanglement swapping and teleportation using Mach–Zehnder interferometer assisted with a cross-Kerr cell: generation of tripartite entangled state

  • Mohammad Kazem Tavassoly
  • Razieh Pakniat
  • Mohammad Hossein Zandi
Article
  • 41 Downloads

Abstract

In this paper, we outline new implementations for entanglement swapping and quantum teleportation using the Mach–Zehnder interferometer, where an external mode is coupled to an internal mode of the interferometer through a nonlinear cross-Kerr cell in the absence of losses and noises. The initial state of the total system contains two distinctly atom–field entangled states \(((AF)_{1,2})\), each previously generated via the Jaynes–Cummings model, besides an ancillary a-mode as the external mode of the Mach–Zehnder interferometer. Injecting the two-field states and a-mode into the Mach–Zehnder interferometer and then detecting both fields, the subset including the a-mode and the two atoms forms a tripartite entangled state. Therefore, entanglement swapping from \((AF)_{1,2}\) to the subsystem of two atoms and a-mode is appropriately performed. Next, we calculate success probability and fidelity. It is demonstrated that the maximum values of fidelity is achieved for the intensities of coherent field larger than 2. Finally, we show that the Mach–Zehnder interferometer may be used to teleport an entangled state with complete fidelity, by applying a quantum channel with an unknown state. The complete fidelity can be obtained by assuming that the dissipative factors are ignorable in the applied setups.

References

  1. 1.
    A. Peres, Quantum Theory: Concepts and Methods, vol. 57 (Springer, Berlin, 2006)MATHGoogle Scholar
  2. 2.
    G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments, vol. 173 (Springer, Berlin, 2003)MATHGoogle Scholar
  3. 3.
    R. Daneshmand, M.K. Tavassoly, Ann. Phys. 529, 1600246 (2017)CrossRefGoogle Scholar
  4. 4.
    S.M. Barnett, Quantum Information (Oxford University Press, Oxford, 2009)MATHGoogle Scholar
  5. 5.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    C.H. Bennett, D.P. DiVincenzo, Nature 404, 247 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    D. Gonţa, P. van Loock, Appl. Phys. B 122, 118 (2016)ADSGoogle Scholar
  8. 8.
    M. Uphoff, M. Brekenfeld, G. Rempe, S. Ritter, Appl. Phys. B 122, 46 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Torres, J. Bernád, G. Alber, Phys. Rev. A 90, 012304 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    M. Zukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, Phys. Rev. Lett. 71, 4287 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    S. Bose, V. Vedral, P.L. Knight, Phys. Rev. A 57, 822 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Q.H. Liao, G.Y. Fang, Y.Y. Wang, M.A. Ahmad, S. Liu, Eur. Phys. J. D 61, 475 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S. Bose, V. Vedral, P.L. Knight, Phys. Rev. A 60, 194 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    R. Pakniat, M.K. Tavassoly, M.H. Zandi, Chin. Phys. B 25, 100300 (2016)CrossRefGoogle Scholar
  16. 16.
    A.D. dSouza, W.B. Cardoso, A.T. Avelar, B. Baseia, Phys. Scr. 80, 4 (2009)CrossRefGoogle Scholar
  17. 17.
    T.K. Liu, J.S. Wang, J. Feng, M.S. Zhan, Chin. Phys. Lett. 19, 1573 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    C.Y. Chen, Y. Yu, Commun. Theor. Phys. 45, 1023 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    R. Pakniat, M.K. Tavassoly, M.H. Zandi, Opt. Commun. 382, 381 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    A. Nourmandipour, M.K. Tavassoly, Phys. Rev. A 94, 022339 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    M. Ghasemi, M.K. Tavassoly, A. Nourmandipour, Eur. Phys. J. Plus 132, 531 (2017)CrossRefGoogle Scholar
  22. 22.
    D. Gonţa, P. Van Loock, Phys. Rev. A 84, 042303 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    D. Gonţa, P. van Loock, Phys. Rev. A 86, 052312 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    D. Gonţa, P. van Loock, Phys. Rev. A 88, 052308 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Y.H. Kim, S.P. Kulik, Y. Shih, Phys. Rev. Lett. 86, 1370 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    L. Ye, G.C. Guo, Phys. Rev. A 70, 054303 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    W.B. Cardoso, A.T. Avelar, B. Baseia, N.G. de Almeida, Phys. Rev. A 72, 045802 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Z.L. Cao, Y. Zhao, M. Yang, Phys. A 360, 17 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)Google Scholar
  30. 30.
    M.D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W.M. Itano, J.D. Jost et al., Nature 429, 737 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    C.C. Gerry, R. Grobe, Phys. Rev. A 75, 034303 (2007)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    C.C. Gerry, Phys. Rev. A 59, 4095 (1999)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    W. Munro, K. Nemoto, T.P. Spiller, S.D. Barrett, P. Kok, R.G. Beausoleil, J. Opt. B: Quantum Semiclass. Opt. 7, S135 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    C.C. Gerry, A. Benmoussa, R.A. Campos, Phys. Rev. A 66, 013804 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)CrossRefMATHGoogle Scholar
  36. 36.
    B. Yurke, D. Stoler, Phys. Rev. Lett. 57, 13 (1986)ADSCrossRefGoogle Scholar
  37. 37.
    A. Karimi, M.K. Tavassoly, Commun. Theor. Phys. 64, 341 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    C. Wittmann, M. Takeoka, K.N. Cassemiro, M. Sasaki, G. Leuchs, U.L. Andersen, Phys. Rev. Lett. 101(21), 210501 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    R. Pakniat, M.H. Zandi, M.K. Tavassoly, Eur. Phys. J. Plus 132, 3 (2017)CrossRefGoogle Scholar
  40. 40.
    M. Yang, W. Song, Z.L. Cao, Phys. Rev. A 71, 034312 (2005)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Kazem Tavassoly
    • 1
  • Razieh Pakniat
    • 2
  • Mohammad Hossein Zandi
    • 3
  1. 1.Atomic and Molecular Group, Faculty of PhysicsYazd UniversityYazdIran
  2. 2.Department of Physics, Estahban Higher Education CenterEstahbanIran
  3. 3.Faculty of PhysicsShahid Bahonar University of KermanKermanIran

Personalised recommendations