Applied Physics B

, 124:30 | Cite as

Efficient and robust photo-ionization loading of beryllium ions

  • Sebastian Wolf
  • Dominik Studer
  • Klaus Wendt
  • Ferdinand Schmidt-Kaler


We demonstrate the efficient generation of \(\hbox {Be}^+\) ions with a 60 ns and 150 nJ laser pulse near 235 nm for two-step photo-ionization, proven by subsequent counting of the number of ions loaded into a linear Paul trap. The bandwidth and power of the laser pulse are chosen in such a way that a first, resonant step fully saturates the entire velocity distribution of beryllium atoms effusing from a thermal oven. The second excitation step is driven by the same light field causing efficient non-resonant ionization. Our ion-loading scheme has a similar efficiency as compared to former pathways using two-photon continuous wave laser excitation, but with an order of magnitude lower than average UV light power.



We acknowledge support from the DFG through the DIP program (Grant no. SCHM 1049/7-1), within the cluster of excellence PRISMA and from the EU through ENSAR2 RESIST (Grant no. 654002).


  1. 1.
    D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W.M. Itano, B. Jelenković, C. Langer, T. Rosenband et al., Nature 422, 412 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G.P. Lancaster, T. Deuschle, C. Becher, C.F. Roos, J. Eschner, R. Blatt, Nature 422, 408 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    D. Moehring, P. Maunz, S. Olmschenk, K. Younge, D. Matsukevich, L.-M. Duan, C. Monroe, Nature 449, 68 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    G. Morigi, H. Walther, Eur. Phys. J. D-Atomic Mol. Opt. Plasma Phys. 13, 261 (2001)Google Scholar
  5. 5.
    H. Kaufmann, T. Ruster, C. Schmiegelow, M. Luda, V. Kaushal, J. Schulz, D. von Lindenfels, F. Schmidt-Kaler, U. Poschinger, Phys. Rev. Lett. 119, 150503 (2017)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Rev. Mod. Phys. 87, 637 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    J. Keller, T. Burgermeister, D. Kalincev, J. Kiethe, T. Mehlstäubler, J. Phys. Conf. Ser. 723, 012027 (2016). (IOP Publishing, 2016)CrossRefGoogle Scholar
  8. 8.
    J. Keller, H. Partner, T. Burgermeister, T. Mehlstäubler, J. Appl. Phys. 118, 104501 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, E. Peik, Phys. Rev. Lett. 116, 063001 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    N. Kjærgaard, L. Hornekær, A. Thommesen, Z. Videsen, M. Drewsen, Appl. Phys. B Lasers Opt. 71, 207 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    S. Gulde, D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, W. Hogervorst, Appl. Phys. B 73, 861 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    H.-Y. Lo, J. Alonso, D. Kienzler, B.C. Keitch, L.E. de Clercq, V. Negnevitsky, J.P. Home, Appl. Phys. B 114, 17 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    R. B. Blakestad, Transport of trapped-ion qubits within a scalable quantum processor, Ph.D. thesis, University of Colorado at Boulder, 2010Google Scholar
  14. 14.
    N. Daniilidis, S. Gerber, G. Bolloten, M. Ramm, A. Ransford, E. Ulin-Avila, I. Talukdar, H. Häffner, Phys. Rev. B 89, 245435 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    D.A. Hite, Y. Colombe, A.C. Wilson, K.R. Brown, U. Warring, R. Jördens, J.D. Jost, K. McKay, D. Pappas, D. Leibfried et al., Phys. Rev. Lett. 109, 103001 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    A. Windberger, J.C. López-Urrutia, H. Bekker, N. Oreshkina, J. Berengut, V. Bock, A. Borschevsky, V. Dzuba, E. Eliav, Z. Harman et al., Phys. Rev. Lett. 114, 150801 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    J.-P. Uzan, Rev. Mod. Phys. 75, 403 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    A. Derevianko, V. Dzuba, V. Flambaum, Phys. Rev. Lett. 109, 180801 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    K. Ledingham, R. Singhal, Int. J. Mass Spectrom. Ion Process. 163, 149 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    J. Yi, C. Geppert, R. Horn, K. Wendt, Jpn. J. Appl. Phys. 42, 5066 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    S. Rothe, B. Marsh, C. Mattolat, V. Fedosseev, K. Wendt, J. Phys. Conf. Ser. 312, 052020 (2011). (IOP Publishing, 2011)CrossRefGoogle Scholar
  22. 22.
    V. Sonnenschein, I. Moore, H. Khan, I. Pohjalainen, M. Reponen, Hyperfine Interact. 227, 113 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    D. Leibfried, Private Communication (National Institute of Standards and Technology, Boulder, 2018)Google Scholar
  24. 24.
    L. Giver, B. Gentry, G. Schwemmer, T. Wilkerson, J. Quant. Spectrosc. Radiat. Transf. 27, 423 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    G. Jacob, K. Groot-Berning, S. Wolf, S. Ulm, L. Couturier, S.T. Dawkins, U.G. Poschinger, F. Schmidt-Kaler, K. Singer, Phys. Rev. Lett. 117, 043001 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    G. Blume, O. Nedow, D. Feise, J. Pohl, K. Paschke, Opt. Express 21, 21677 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    F. Cozijn, J. Biesheuvel, A. Flores, W. Ubachs, G. Blume, A. Wicht, K. Paschke, G. Erbert, J. Koelemeij, Opt. Lett. 38, 2370 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    P. Smith, C. Heise, J. Esmond, Atomic spectral line database from cd-rom 23 of rl kurucz. cambridge: Smithsonian astrophysical observatory, (1995)Google Scholar
  29. 29.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.QUANTUM, Institut für PhysikJohannes Gutenberg UniversitätMainzGermany

Personalised recommendations