Applied Physics B

, 124:13 | Cite as

A discretely tunable dual-wavelength multi-watt Yb:CALGO laser

  • Sujith Manjooran
  • Pavel Loiko
  • Arkady Major


A discretely tunable dual-wavelength diode-pumped Yb:CALGO laser using a single birefringent filter (BRF) plate which covered a wavelength range of approximately 1020–1070 nm was demonstrated. A detailed study was conducted for BRF plates with thickness of 0.5, 2, 4 and 6 mm using different output couplers. This simple design was capable of delivering multi-watt dual-wavelength output power and the frequency offset discretely varied from approximately 1.3 to 12.5 THz. The maximum dual-wavelength output power was 4.1 W using a 6-mm-thick BRF plate with 5% output coupler.



The authors would like to acknowledge funding of this project provided by the Natural Science and Engineering Research Council of Canada (NSERC), Western Economic Diversification Canada, and the University of Manitoba. P. Loiko acknowledges financial support from the Government of the Russian Federation (Grant No. 074-U01) through ITMO Post-Doctoral Fellowship scheme.


  1. 1.
    S. Chang, Y. Mao, C. Flueraru, Dual-source swept-source optical coherence tomography reconstructed on integrated spectrum. Int. J. Opt. 2012, 565823 (2012)CrossRefGoogle Scholar
  2. 2.
    R. Czarny, M. Alouini, C. Larat, M. Krakowski, D. Dolfi, THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing. Electron. Lett. 40, 942–943 (2004)CrossRefGoogle Scholar
  3. 3.
    S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, S. Jian, Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings. Opt. Express 16, 11830–11835 (2008)CrossRefADSGoogle Scholar
  4. 4.
    Y. Ji, J. Cao, J. Xu, Z. You, C. Tu, 2.4 W highly efficient simultaneous dual-wavelength laser operation of monoclinic Yb3+:Ca4LaO(BO3)3 crystals. Appl. Opt. 53, 5517–5521 (2014)CrossRefADSGoogle Scholar
  5. 5.
    A. Brenier, Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser. Quantum Electron. 47, 279–284 (2011)CrossRefADSGoogle Scholar
  6. 6.
    K. Naganuma, G. Lenz, E.P. Ippen, Variable bandwidth birefringent filter for stable femtosecond lasers. IEEE J. Quantum Electron. 28, 2142–2150 (1992)CrossRefADSGoogle Scholar
  7. 7.
    C.G. Trevino-Palacios, O.J. Zapata-Nava, E.V. Mejia-Uriarte, N. Qureshi, G. Paz-Martinez, O. Kolokolstev, Dual wavelength continuous wave laser using a birefringent filter. J. Eur. Opt. Soc. 8, 5 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Ghanbari, A. Major, High power continuous-wave dual-wavelength alexandrite laser. Laser Phys. Lett. 14, 105001 (2017)CrossRefADSGoogle Scholar
  9. 9.
    U. Demirbas, R. Uecker, J.G. Fujimoto, A. Leitenstorfer, Multicolor lasers using birefringent filters: experimental demonstration with Cr:Nd:GSGG and Cr:LiSAF. Opt. Express 25, 2594–2607 (2017)CrossRefADSGoogle Scholar
  10. 10.
    T. Yerebakan, U. Demırbas, S. Eggert, R. Bertram, P. Reiche, A. Leitenstorfer, Red-diode-pumped Cr:Nd:GSGG laser: two-color mode-locked operation. J. Opt. Soc. Am. B 34, 1023–1032 (2017)CrossRefADSGoogle Scholar
  11. 11.
    T. Waritanant, A. Major, Thermal lensing in Nd:YVO4 laser with in-band pumping at 914 nm. Appl. Phys. B 122, 135 (2016)CrossRefADSGoogle Scholar
  12. 12.
    T. Waritanant, A. Major, High efficiency passively mode-locked Nd:YVO4 laser with direct in-band pumping at 914 nm. Opt. Express 24, 12851–12855 (2016)CrossRefADSGoogle Scholar
  13. 13.
    R.C. Talukder, Z.E. Md., T. Halim, A. Waritanant, Major, Multiwatt continuous wave Nd:KGW laser with hot-band diode pumping. Opt. Lett. 41, 3810–3812 (2016)CrossRefADSGoogle Scholar
  14. 14.
    Z.E. Md., R.C. Halim, T. Talukder, A. Waritanant, Major, Passive mode locking of a Nd:KGW laser with hot-band diode pumping. Laser Phys. Lett. 13, 105003 (2016)CrossRefADSGoogle Scholar
  15. 15.
    G. Shayeganrad, L. Mashhadi, Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm. Appl. Phys. B 111, 189–194 (2013)CrossRefADSGoogle Scholar
  16. 16.
    T. Waritanant, A. Major, Diode-pumped Nd:YVO4 laser with discrete multi-wavelength tunability and high efficiency. Opt. Lett. 42, 1149–1152 (2017)CrossRefADSGoogle Scholar
  17. 17.
    T. Waritanant, A. Major, Discretely selectable multiwavelength operation of a semiconductor saturable absorber mirror mode-locked Nd:YVO4 laser. Opt. Lett. 42, 3331–3334 (2017)CrossRefADSGoogle Scholar
  18. 18.
    R. Moncorgé, B. Chambon, J.Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, P. Farge, Nd doped crystals for medical laser applications. Opt. Mater. 8, 109–119 (1997)CrossRefADSGoogle Scholar
  19. 19.
    F. Brunner, G.J. Spühler, J. Aus der Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A.A. Lagatsky, A. Abdolvand, N.V. Kuleshov, and U. Keller, Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power. Opt. Lett. 25, 1119–1121 (2000)CrossRefADSGoogle Scholar
  20. 20.
    A. Major, L. Giniunas, N. Langford, A.I. Ferguson, D. Burns, E. Bente, R. Danielius, Saturable Bragg reflector-based continuous-wave mode locking of Yb:KGd(WO4)2 laser. J. Mod. Opt. 49, 787–793 (2002)CrossRefADSGoogle Scholar
  21. 21.
    H. Zhao, A. Major, Megawatt peak power level sub-100 fs Yb:KGW oscillators. Opt. Express 22, 30425–30431 (2014)CrossRefADSGoogle Scholar
  22. 22.
    R. Akbari, H. Zhao, K.A. Fedorova, E.U. Rafailov, A. Major, Quantum-dot saturable absorber and Kerr-lens mode-locked Yb:KGW laser with > 450 kW of peak power. Opt. Lett. 41, 3771–3774 (2016)CrossRefADSGoogle Scholar
  23. 23.
    R. Akbari, K.A. Fedorova, E.U. Rafailov, A. Major, Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on SESAM and Kerr-lens mode locking. Appl. Phys. B 123, 123 (2017)CrossRefADSGoogle Scholar
  24. 24.
    G. Machinet, P. Sevillano, F. Guichard, R. Dubrasquet, P. Camy, J.L. Doualan, R. Moncorge, P. Georges, F. Druon, D. Descamps, E. Cormier, High-brightness fiber laser-pumped 68 fs-2.3 W Kerr-lens mode-locked Yb:CaF2 oscillator. Opt. Lett. 38, 4008–4010 (2013)CrossRefADSGoogle Scholar
  25. 25.
    P. Sévillano, P. Georges, F. Druon, D. Descamps, E. Cormier, 32-fs Kerr-lens mode-locked Yb:CaGdAlO4 oscillator optically pumped by a bright fiber laser. Opt. Lett. 39, 6001–6004 (2014)CrossRefADSGoogle Scholar
  26. 26.
    A. Major, R. Cisek, V. Barzda, Development of diode-pumped high average power continuous-wave and ultrashort pulse Yb:KGW lasers for nonlinear microscopy. Proc. SPIE 6108, 61080Y (2006)Google Scholar
  27. 27.
    D. Sandkuijl, R. Cisek, A. Major, V. Barzda, Differential microscopy for fluorescence-detected nonlinear absorption linear anisotropy based on a staggered two-beam femtosecond Yb:KGW oscillator. Biomed. Opt. Express 1, 895–901 (2010)CrossRefGoogle Scholar
  28. 28.
    I.P. Nikolakakos, A. Major, J.S. Aitchison, P.W.E. Smith, Broadband characterization of the nonlinear optical properties of common reference materials. IEEE J. Sel. Top. Quantum Electron. 10, 1164–1170 (2004)CrossRefGoogle Scholar
  29. 29.
    A. Major, F. Yoshino, J.S. Aitchison, P.W.E. Smith, E. Sorokin, I.T. Sorokina, Ultrafast nonresonant third-order optical nonlinearities in ZnSe for photonic switching at telecom wavelengths. Appl. Phys. Lett. 85, 4606–4608 (2004)CrossRefADSGoogle Scholar
  30. 30.
    N. Prent, C. Green, C. Greenhalgh, R. Cisek, A. Major, B. Stewart, V. Barzda, Inter-myofilament dynamics of myocytes revealed by second harmonic generation microscopy. J. Biomed. Opt. 13, 041318 (2008)CrossRefGoogle Scholar
  31. 31.
    J. Liu, H. Zhang, J. Wang, V. Petrov, Output-coupling-dependent polarization state of a continuous-wave Yb:YCa4O(BO3)3 laser. Opt. Lett. 32, 2909–2911 (2007)CrossRefADSGoogle Scholar
  32. 32.
    N.V. Kuleshov, A.A. Lagatsky, A.V. Podlipensky, V.P. Mikhailov, G. Huber, Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2. Opt. Lett. 22, 1317–1319 (1997)CrossRefADSGoogle Scholar
  33. 33.
    A. Brenier, Tunable THz frequency difference from a diode-pumped dual-wavelength Yb 3+:KGd(WO4)2 laser with chirped volume Bragg gratings. Laser Phys. Lett. 8, 520 (2011)CrossRefADSGoogle Scholar
  34. 34.
    H. Zhao, A. Major, Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing. Appl. Phys. B 122, 163–169 (2016)CrossRefADSGoogle Scholar
  35. 35.
    P. Loiko, S. Manjooran, K. Yumashev, A. Major, Polarization anisotropy of thermal lens in Yb:KY(WO4)2 laser crystal under high-power diode pumping. Appl. Opt. 56, 2937–2945 (2017)CrossRefADSGoogle Scholar
  36. 36.
    H. Zhao, A. Major, A continuous wave Yb:KGW laser with polarization-independent pump absorption. Laser Phys. 23, 095001 (2013)CrossRefADSGoogle Scholar
  37. 37.
    R. Akbari, H. Zhao, A. Major, High-power continuous-wave dual-wavelength operation of a diode-pumped Yb:KGW laser. Opt. Lett. 41, 1601–1604 (2016)CrossRefADSGoogle Scholar
  38. 38.
    R.L. Aggarwal, D.J. Ripin, J.R. Ochoa, T.Y. Fan, Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range. J. Appl. Phys. 98, 103514 (2005)CrossRefADSGoogle Scholar
  39. 39.
    F. Druon, F. Balembois, P. Georges, New laser crystals for the generation of ultrashort pulses. C R Phys. 8, 153–164 (2007)CrossRefADSGoogle Scholar
  40. 40.
    J. Petit, P. Goldner, B. Viana, Laser emission with low quantum defect in Yb:CaGdAlO4. Opt. Lett. 30, 1345–1347 (2005)CrossRefADSGoogle Scholar
  41. 41.
    P. Loiko, F. Druon, P. Georges, B. Viana, K. Yumashev, Thermo-optic characterization of Yb:CaGdAlO4 laser crystal. Opt. Mater. Express 4, 2241–2249 (2014)CrossRefGoogle Scholar
  42. 42.
    F. Druon, M. Olivier, A. Jaffres, P. Loiseau, N. Aubry, J. DidierJean, F. Balembois, B. Viana, P. Georges, Magic mode switching in Yb:CaGdAlO4 laser under high pump power. Opt. Lett. 38, 4138–4141 (2013)CrossRefADSGoogle Scholar
  43. 43.
    S. Manjooran, A. Major, Generation of sub-50 fs pulses with > 1.5 MW of peak power from a diode-pumped Yb:CALGO laser oscillator, in Conference on Lasers and Electro-Optics (OSA, 2016), p. JTu5A.82Google Scholar
  44. 44.
    P. Loiko, J.M. Serres, X. Mateos, X. Xu, J. Xu, V. Jambunathan, P. Navratil, A. Lucianetti, T. Mocek, X. Zhang, U. Griebner, V. Petrov, M. Aguiló, F. Díaz, A. Major, Microchip Yb:CaLnAlO4 lasers with up to 91% slope efficiency. Opt. Lett. 42, 2431–2434 (2017)CrossRefADSGoogle Scholar
  45. 45.
    H. Mirzaeian, S. Manjooran, A. Major, “A simple technique for accurate characterization of thermal lens in solid state lasers. Proc. SPIE 9288, 928802 (2014)CrossRefGoogle Scholar
  46. 46.
    S. Zhu, Birefringent filter with tilted optic axis for tuning dye lasers: theory and design. Appl. Opt. 29, 410–415 (1990)CrossRefADSGoogle Scholar
  47. 47.
    B. Stormont, A.J. Kemp, I.G. Cormack, B. Agate, C.T.A. Brown, W. Sibbett, R. Szipocs, Broad tunability from a compact, low-threshold Cr:LiSAF laser incorporating an improved birefringent filter and multiple-cavity Gires–Tournois interferometer mirrors. J. Opt. Soc. Am. B 22, 1236–1243 (2005)CrossRefADSGoogle Scholar
  48. 48.
    A.L. Bloom, Modes of a laser resonator containing tilted birefringent plates. J. Opt. Soc. Am. 64, 447–452 (1974)CrossRefADSGoogle Scholar
  49. 49.
    S. Lovold, P. Moulton, D. Killinger, N. Menyuk, Frequency tuning characteristics of a Q-switched Co:MgF2 laser. IEEE J. Quantum Electron. 21, 202–208 (1985)CrossRefADSGoogle Scholar
  50. 50.
    S.M. Kobtsev, N.A. Sventsitskaya, Application of birefringent filters in continuous-wave tunable lasers: a review. Opt. Spectrosc. 73, 114–123 (1992)ADSGoogle Scholar
  51. 51.
    U. Demırbas, Off-surface optic axis birefringent filters for smooth tuning of broadband lasers. Appl. Opt. 56, 7815–7825 (2017)CrossRefGoogle Scholar
  52. 52.
    G. Ghosh, Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun. 163, 8 (1999)CrossRefGoogle Scholar
  53. 53.
    O. Svelto, Principles of Lasers, 5th edn. Springer, Berlin (2010)CrossRefGoogle Scholar
  54. 54.
    H. Zhao, A. Major, Dynamic characterization of intracavity losses in broadband quasi-three-level lasers. Opt. Express 22, 26651–26658 (2014)CrossRefADSGoogle Scholar
  55. 55.
    H. Yoshioka, S. Nakamura, T. Ogawa, S. Wada, Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity. Opt. Express 18, 1479–1486 (2010)CrossRefADSGoogle Scholar
  56. 56.
    Q. Yang, Y.G. Wang, D.H. Liu, J. Liu, L.H. Zheng, L.B. Su, J. Xu, Dual-wavelength mode-locked Yb:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber. Laser Phys. Lett. 9, 135–140 (2012)CrossRefADSGoogle Scholar
  57. 57.
    W.Z. Zhuang, M.T. Chang, K.W. Su, K.F. Huang, Y.F. Chen, High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser. Laser Phys. 23, 075803 (2013)CrossRefADSGoogle Scholar
  58. 58.
    M. Scheller, J.M. Yarborough, J.V. Moloney, M. Fallahi, M. Koch, S.W. Koch, Room temperature continuous wave milliwatt terahertz source. Opt. Express 18, 27112–27117 (2010)CrossRefADSGoogle Scholar
  59. 59.
    S. Manjooran, H. Zhao, I.T. Lima Jr., A. Major, Phase-matching properties of PPKTP, MgO:PPSLT and MgO:PPcLN for ultrafast optical parametric oscillation in the visible and near-infrared ranges with green pump. Laser Phys. 22, 1325–1330 (2012)CrossRefADSGoogle Scholar
  60. 60.
    H. Zhao, I.T. Lima, A. Major, Near-infrared properties of periodically poled KTiOPO4 and stoichiometric MgO-doped LiTaO3 crystals for high power optical parametric oscillation with femtosecond pulses. Laser Phys. 20, 1404–1409 (2010)CrossRefADSGoogle Scholar
  61. 61.
    I.T. Lima Jr., V. Kultavewuti, A. Major, Phasematching properties of congruent MgO-doped and undoped periodically poled LiNbO3 for optical parametric oscillation with ultrafast excitation at 1 μm. Laser Phys. 20, 270–275 (2010)CrossRefADSGoogle Scholar
  62. 62.
    R. Akbari, A. Major, Optical, spectral and phase-matching properties of BIBO, BBO and LBO crystals for optical parametric oscillation in the visible and near-infrared wavelength ranges. Laser Phys. 23, 035401 (2013)CrossRefADSGoogle Scholar
  63. 63.
    A. Major, D. Sandkuijl, V. Barzda, Efficient frequency doubling of a femtosecond Yb:KGW laser in a BiB3O6 crystal. Opt. Express 17, 12039–12042 (2009)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of ManitobaWinnipegCanada
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations