Applied Physics B

, 123:245 | Cite as

An open-path tunable diode laser absorption spectrometer for detection of carbon dioxide at the Bonanza Creek Long-Term Ecological Research Site near Fairbanks, Alaska

  • D. Michelle Bailey
  • Erin M. Adkins
  • J. Houston Miller
Part of the following topical collections:
  1. Field Laser Applications in Industry and Research


We have developed a low-power, open-path, near-infrared (NIR) tunable diode laser sensor for the measurement of near ground-level concentrations of greenhouse gases. Here, we report on instrument design, characterization, and initial measurements of carbon dioxide concentrations during deployment to a thermokarst collapse scar bog near Fairbanks, AK (USA). The optics “launch-box” portion of the instrument couples radiation from an NIR, distributed feedback diode laser operating near 1572 nm with a visible laser for alignment purposes. The outgoing beam is directed through a 3.2-mm hole in a parabolic mirror and the launch-box is oriented using a two axis, altitude-azimuth telescope mount such that the beam strikes a retroreflector target at a set distance downfield. The beam then retraces the path back to the launch-box where the light is collected on the surface of the parabolic mirror and focused onto a multimode fiber that transfers the radiation to an InGaAs detector. Sweeps over a ~1.6 cm−1 spectral region were collected at a rate of 500 scans per second and were typically stored as 10 s sweep averages. These averaged sweeps could be individually spectrally fit for CO2 concentration or averaged into a single spectrum for fitting (after correction for slight frequency drift). Field data reported here was averaged for 2.5 min and was found to follow trends in diurnal cycles of CO2 concentration cycles reported by sensors located nearby in the field site.



Funding for this project is provided by the NASA Hydrospheric and Biospheric Science Research Program (Grant/Cooperative Agreement Number NNX14AN89G). The authors would like to thank our collaboration partners led by Dr. Emily L. Wilson (NASA Goddard) and Dr. Eugenie Euskirchen (University of Alaska—Fairbanks). We would also like to thank Prof. Amy Zanne for the loan of the LGR sensor used in calibration procedures.


  1. 1.
    IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland (2014)Google Scholar
  2. 2.
    IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland (2007)Google Scholar
  3. 3.
    UNFCCC. Conference of the Parties (COP), United Nations Office at Geneva, Geneva, Switzerland (2010)Google Scholar
  4. 4.
    T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, S. Maksyutov, SOLA 5 (2009)Google Scholar
  5. 5.
    T.E. Taylor, C.W. O'Dell, C. Frankenberg, P.T. Partain, H.Q. Cronk, A. Savtchenko, R.R. Nelson, E.J. Rosenthal, A.Y. Chang, B. Fisher, G.B. Osterman, R.H. Pollock, D. Crisp, A. Eldering, M.R. Gunson, Atmos. Meas. Technol. 9, 3 (2016)Google Scholar
  6. 6.
    D. Crisp, H.R. Pollock, R. Rosenberg, L. Chapsky, R.A.M. Lee, F.A. Oyafuso, C. Frankenberg, C.W. O'Dell, C.J. Bruegge, G.B. Doran, A. Eldering, B.M. Fisher, D. Fu, M.R. Gunson, L. Mandrake, G.B. Osterman, F.M. Schwandner, K. Sun, T.E. Taylor, P.O. Wennberg, D. Wunch, Atmos. Meas. Technol. 10, 1 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Inoue, I. Morino, O. Uchino, Y. Miyamoto, Y. Yoshida, T. Yokota, T. Machida, Y. Sawa, H. Matsueda, C. Sweeney, P.P. Tans, A.E. Andrews, S.C. Biraud, T. Tanaka, S. Kawakami, P.K. Patra, Atmos. Chem. Phys. 13, 19 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Zhou, B. Dils, P. Wang, R. Detmers, Y. Yoshida, C.W. O'Dell, D.G. Feist, V.A. Velazco, M. Schneider, M. De Mazière, Atmos. Meas. Technol. 9, 3 (2016)Google Scholar
  9. 9.
    D. Wunch, G.C. Toon, J.F. Blavier, R.A. Washenfelder, J. Notholt, B.J. Connor, D.W. Griffith, V. Sherlock, P.O. Wennberg, Philos. Trans. R. Soc. A 369, 1943 (2011)CrossRefGoogle Scholar
  10. 10.
    Y. Miyamoto, M. Inoue, I. Morino, O. Uchino, T. Yokota, T. Machida, Y. Sawa, H. Matsueda, C. Sweeney, P.P. Tans, A.E. Andrews, P.K. Patra, Atmos. Chem. Phys. 13, 10 (2013)Google Scholar
  11. 11.
    S.S. Kulawik, J.R. Worden, S.C. Wofsy, S.C. Biraud, R. Nassar, D.B.A. Jones, E.T. Olsen, R. Jimenez, S. Park, G.W. Santoni, B.C. Daube, J.V. Pittman, B.B. Stephens, E.A. Kort, G.B. Osterman, Atmos. Chem. Phys. 13, 6 (2013)CrossRefGoogle Scholar
  12. 12.
    S.C. Wofsy, H.S. Team, M. Cooperating, T. Satellite, Philos. Trans. R. Soc. A 369, 1943 (2011)CrossRefGoogle Scholar
  13. 13.
    P. Farrell, D. Culling, I. Leifer, Atmos. Environ. 74 (2013)Google Scholar
  14. 14.
    C. Schadel, M.K.F. Bader, E.A.G. Schuur, C. Biasi, R. Bracho, P. Capek, S. De Baets, K. Diakova, J. Ernakovich, C. Estop-Aragones, D.E. Graham, I.P. Hartley, C.M. Iversen, E. Kane, C. Knoblauch, M. Lupascu, P.J. Martikainen, S.M. Natali, R.J. Norby, J.A. O’Donnell, T.R. Chowdhury, H. Santruckova, G. Shaver, V.L. Sloan, C.C. Treat, M.R. Turetsky, M.P. Waldrop, K.P. Wickland, Nautre Clim. Change 6, 10 (2016)Google Scholar
  15. 15.
    J.K. Jansson, N. Tas, Nature Rev. Microbiol. 12, 6 (2014)Google Scholar
  16. 16.
    W.F. Vincent, M. Lemay, M. Allard, Arctic Science 3, 2 (2017)Google Scholar
  17. 17.
    K.C. Kelsey, K.P. Wickland, R.G. Striegl, J.C. Neff, Arc. Antarc. Alp. Res. 44, 4 (2012)Google Scholar
  18. 18.
    E.S. Euskirchen, C.W. Edgar, M.R. Turetsky, M.P. Waldrop, J.W. Harden, J. Geophys. Res. Biogeosci. 119, 8 (2014)CrossRefGoogle Scholar
  19. 19.
    T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 2–3 (2002)CrossRefGoogle Scholar
  20. 20.
    B. Kühnreich, S. Wagner, J.C. Habig, O. Möhler, H. Saathoff, V. Ebert, Appl. Phys. B 119, 1 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Seidel, S. Wagner, A. Dreizler, V. Ebert, Atmos. Meas. Technol. 8, 5 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Seidel, S. Wagner, V. Ebert, Appl. Phys. B 109, 3 (2012)CrossRefGoogle Scholar
  23. 23.
    T.K. Flesch, R.L. Desjardins, D. Worth, Biomass Bioenergy 35, 9 (2011)CrossRefGoogle Scholar
  24. 24.
    E.D. Thoma, R.C. Shores, E.L. Thompson, D.B. Harris, S.A. Thorneloe, R.M. Varma, R.A. Hashmonay, M.T. Modrak, D.F. Natschke, H.A. Gamble, J. Air Waste Manag. Assoc. 55, 5 (2005)CrossRefGoogle Scholar
  25. 25.
    D. Griffith, D. Pohler, S. Schmidt, S. Hammer, S. Vardag, I. Levin, U. Platt, Geophysical Research Abstracts, 17, EGU 2015-11449-3, (2015)Google Scholar
  26. 26.
    J. Rentz Dupuis, D.J. Mansur, R.M. Vaillancourt, D.L. Carlson, T. Evans, E. Schundler, L. Todd, K. Mottus, in Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling ed. by A.W. Fountain III, P. J. Gardner. Proc. SPIE 7304, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing X, 7304 0P. Orlando, Florida, United States 14–16 April 2009 (2009)Google Scholar
  27. 27.
    J.H. Rentz, J.R. Engel, D.L. Carlson, D.J. Mansur, R.M. Vaillancourt, G.J. Genetti, P. Griffiths, H. Yang, Proc. SPIE 5272, Industrial and Highway Sensors Technology (2004)Google Scholar
  28. 28.
    H. Xia, W. Liu, Y. Zhang, R. Kan, M. Wang, Y. He, Y. Cui, J. Ruan, H. Geng, Chin. Opt. Lett. 6, 6 (2008)Google Scholar
  29. 29.
    A.P.M. Michel, D.J. Miller, K. Sun, L. Tao, L. Stanton, M.A. Zondlo, J. Atmos. Ocean Technol. 33, 11 (2016)CrossRefGoogle Scholar
  30. 30.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 29 (2009)CrossRefGoogle Scholar
  31. 31.
    X. Chao, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 106, 4 (2011)Google Scholar
  32. 32.
    K. Sun, X. Chao, R. Sur, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 24, 12 (2013)Google Scholar
  33. 33.
    M. Nikodem, G. Wysocki, Sensors 12, 12 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Nikodem, G. Plant, D. Sonnenfroh, G. Wysocki, App. Phys. B 119, 1 (2014)Google Scholar
  35. 35.
    G. Plant, M. Nikodem, P. Mulhall, R.K. Varner, D. Sonnenfroh, G. Wysocki, Sensors 15, 9 (2015)CrossRefGoogle Scholar
  36. 36.
    L.S. Rothman, L.D.G. Young, J. Quant. Spectrosc. Radiat. Transf 25, 6 (1981)CrossRefGoogle Scholar
  37. 37.
    L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Šimečková, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transf. 110, 9–10 (2009)Google Scholar
  38. 38.
    P. Werle, R. Miicke, F. Slemr, Appl. Phys. B 57, 2 (1993)CrossRefGoogle Scholar
  39. 39.
    A. Savitzky, M.J.E. Golay, Anal. Chem. 36, 8 (1964)CrossRefGoogle Scholar
  40. 40.
    D.E. Heard, Analytical Techniques for Atmospheric Measurement (Blackwell Publishing Ltd, Oxford, 2006)CrossRefGoogle Scholar
  41. 41.
    P. Werle, Spectrochim. Acta A 54, 2 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • D. Michelle Bailey
    • 1
  • Erin M. Adkins
    • 1
  • J. Houston Miller
    • 1
  1. 1.George Washington UniversityWashingtonUSA

Personalised recommendations