Applied Physics B

, 123:231 | Cite as

Simulation of the transient thermally induced beam quality degradation in end-pumped slab Yb:YAG amplifiers of hundred-mJ-level

  • Ye Lang
  • Jianguo Xin
  • Kamal Alameh
  • Zhongwei Fan
  • Yanzhong Chen
  • Wenqi Ge
  • Hongbo Zhang
  • Lifen Liao
Article

Abstract

The transient thermal distribution and thermally induced beam quality (M2) degradation in low repetition (10 Hz) and hundred-mJ-level end-pumped Yb:YAG slab amplifiers with different thicknesses are discussed. Using Fast Fourier Transformation, the output beam quality is evaluated for different pump conditions, including variable pump power, single- or double-end pumping, and different pump beam widths. Simulation results show that for a slab amplifier operating at low repetition rates and high pump energy levels, adequate thermal property and output beam quality can be achieved by simply increasing the slab thickness.

References

  1. 1.
    W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer, 1988)Google Scholar
  2. 2.
    T.Y. Fan, IEEE J. Quantum Electron. 29, 1457 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    T.Y. Fan, S. Klunk, G. Henein, Opt. Lett. 18, 423 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    K. Du, N. Wu, J. Xu, J. Giesekus, P. Loosen, R. Poprawe, Opt. Lett. 23, 370 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    P. Russbueldt, T. Mans, J. Weitenberg, H.D. Hoffmann, R. Poprawe, Opt. Lett. 35, 4169 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    L. Jun, X. Jianguo, L. Ye, C. Jiabin, Opt. Express 22, 22157 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, R. Poprawe, IEEE J. Sel. Top. Quantum Electron. 21, 447 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Mao, H. Zhang, X. Hao, J. Yuan, J. Xing, J. Xin, Y. Jiang, Opt. Express 24, 11017 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    T. Kane, J. Eggleston, R. Byer, IEEE J. Quantum Electron. 21, 1195 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Ma, J. Gao, D. Li, J. Li, N. Wu, K. Du, Opt. Commun. 281, 3522 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    M.M. Tilleman, Opt. Materials 33, 363 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Ying, D. Yu, Y. Shuna, L. Jun, C. Jiabin, C. Shufen, X. Jianguo, Acta Phys. Sin. 62, 024210 (2013)Google Scholar
  13. 13.
    Y. Zhongsheng, L. Jiao, L. Jun, X. Jianguo, C. Jiabin, Opt. Express 21, 23197 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    P. Ferrara, M. Ciofini, L. Esposito, J. Hostaša, L. Labate, A. Lapucci, A. Pirri, G. Toci, M. Vannini, L. Gizzi, Opt. Express 22, 5375 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    E.H. Bernhardi, A. Forbes, C. Bollig, M.J.D. Esser, Opt. Express 16, 11115 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    K. Ertel, S. Banerjee, P. Mason, P. Phillips, M. Siebold, C. Hernandez-Gomez, J. Collier, Opt. Express 19, 26610 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    S. Chénais, F. Druon, S. Forget, F. Balembois, P. Georges, Prog. Quantum Electron. 30, 89 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    L. Osterink, J. Foster, Appl. Phys. Lett. 12, 128 (1968)ADSCrossRefGoogle Scholar
  19. 19.
    H. Kogelnik, Appl. Opt. 4, 1562 (1965)ADSCrossRefGoogle Scholar
  20. 20.
    J.C. Bermudez, V.J. Pinto-Robledo, A.V. Kir’yanov, M.J. Damzen, J. Damzen Opt. Commun. 210, 75 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    A. E. E. D. D. M. Siegman, in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues (Optical Society of America, Washington D.C., 1998), p. MQ1Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of OptoelectronicsBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.Academy of Opto-ElectronicsChinese Academy of ScienceBeijingPeople’s Republic of China
  3. 3.Electron Science Research InstituteEdith Cowan UniversityJoondalupAustralia
  4. 4.Harglo Applied Laser Technology Institute Co. LtdTianjinPeople’s Republic of China

Personalised recommendations