Advertisement

Applied Physics B

, 123:200 | Cite as

An optical multimode fiber as pseudothermal light source

  • Thomas Mehringer
  • Steffen Oppel
  • Joachim von Zanthier
Article

Abstract

We report on a novel pseudothermal light source based on laser light coupled into an optical multimode fiber. The setup is simple, low cost, exhibits inherently high directional light emission and allows for a flexible arrangement. By measuring the photon statistics and spatial two point intensity correlations in the far field we show that the setup exhibits all characteristics of a Gaussian random source.

Notes

Acknowledgements

The authors gratefully acknowledge funding by the Universitätsbund Erlangen-Nürnberg e.V. and the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative.

References

  1. 1.
    R. Hanbury Brown, R.Q. Twiss, Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956)ADSCrossRefGoogle Scholar
  2. 2.
    R. Hanbury Brown, R.Q. Twiss, Test of a new type of stellar interferometer on Sirius. Nature 178, 1046–1048 (1956)ADSCrossRefGoogle Scholar
  3. 3.
    R.J. Glauber, Nobel Lecture: One Hundred Years of Light Quanta, in Les Prix Nobel. The Nobel Prizes 2005, ed. by K. Grandin (Nobel Foundation, Stockholm, 2006)Google Scholar
  4. 4.
    R.S. Bennink, S.J. Bentley, R.W. Boyd, “Two-photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89(11), 113601 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    G. Scarcelli, A. Valencia, Y. Shih, Experimental study of the momentum correlation of a pseudothermal field in the photon-counting regime. Phys. Rev. A 70, 051802 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    G. Scarcelli, A. Valencia, Y. Shih, Two-photon interference with thermal light. Europhys. Lett. 68(5), 618 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    A. Gatti, E. Brambilla, M. Bache, L.A. Lugiato, Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. 93(9), 093602 (2004)Google Scholar
  8. 8.
    F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, L.A. Lugiato, High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 94, 183602 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    I.N. Agafonov, M.V. Chekhova, TSh Iskhakov, A.N. Penin, High-visibility multiphoton interference of Hanbury Brown–Twiss type for classical light. Phys. Rev. A 77, 053801 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    H. Chen, S. Karmakar, Z. Xie, Y. Shih, Observation of anti-correlation of classical chaotic light (2009). arXiv:0911.0052
  11. 11.
    Y. Zhou, J. Simon, J. Liu, Y. Shih, Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime. Phys. Rev. A 81, 043831 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    S. Oppel, T. Büttner, P. Kok, J. von Zanthier, Superresolving multiphoton interferences with independent light sources. Phys. Rev. Lett. 109, 233603 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S. Oppel, R. Wiegner, G.S. Agarwal, J. von Zanthier, Directional superradiant emission from statistically independent incoherent nonclassical and classical sources. Phys. Rev. Lett. 113, 263606 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    D. Bhatti, S. Oppel, R. Wiegner, G.S. Agarwal, J. von Zanthier, Simulating Dicke-like superradiance with classical light sources. Phys. Rev. A 94, 013810 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    X.H. Chen, Q. Liu, K.H. Luo, L.A. Wu, Lensless ghost imaging with true thermal light. Opt. Lett. 34(5), 695–697 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    P.K. Tan, G.H. Yeo, H.S. Poh, A.H. Chan, C. Kurtsiefer, Measuring temporal photon bunching in blackbody radiation. Astrophys. J. Lett. 789, L10 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    D. Zhang, Y.H. Zhai, L.A. Wu, X.H. Chen, Correlated two-photon imaging with true thermal light. Opt. Lett. 18, 2354–2356 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    S. Karmakar, R. Meyers, Y. Shih, Ghost imaging experiment with sunlight compared to laboratory experiment with thermal light. Proc. SPIE 8518, 851805 (2012)CrossRefGoogle Scholar
  19. 19.
    X.F. Liu, X.H. Chen, X.R. Yao, W.K. Yu, G.J. Zhai, L.A. Wu, Lensless ghost imaging with sunlight. Opt. Lett. 8, 2314–2317 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    W. Martienssen, E. Spiller, Coherence and fluctuations in light beams. Am. J. Phys. 32, 919-926 (1964)ADSCrossRefGoogle Scholar
  21. 21.
    F.T. Arecchi, Measurement of the statistical distribution of gaussian and laser sources. Phys. Rev. Lett. 15, 912 (1965)ADSCrossRefGoogle Scholar
  22. 22.
    L.E. Estes, M. Lorenzo, M. Narducci, R.A. Tuft, Scattering of light from a rotating ground glass. J. Opt. Soc. Am. 61, 1301–1306 (1971)ADSCrossRefGoogle Scholar
  23. 23.
    M. Rousseau, Statistical properties of optical fields scattered by random media. Application to rotating ground glass. J. Opt. Soc. Am. 61, 1307 (1971)ADSCrossRefGoogle Scholar
  24. 24.
    O.S. Magana-Loaiza, M. Mirhosseini, R.M. Cross, S.M.H. Rafsanjani, R.W. Boyd, Hanbury brown and twiss interferometry with twisted light. Sci. Adv. 4, e1501143e1501143 (2016)ADSGoogle Scholar
  25. 25.
    J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers, M. Weitz, Observation of grand-canonical number statistics in a photon Bose–Einstein condensate. Phys. Rev. Lett. 112, 030401 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    J. Schmitt, T. Damm, D. Dung, C. Wahl, F. Vewinger, J. Klaers, M. Weitz, Spontaneous symmetry breaking and phase coherence of a photon Bose–Einstein condensate coupled to a reservoir. Phys. Rev. Lett. 116, 033604 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    R. Loudon, The Quantum Theory of Light (Oxford Science Publications, Oxford, 2006)zbMATHGoogle Scholar
  28. 28.
    M. Imai, Statistical Properties of Optical Fiber Speckles (Bull. of the Faculty of Engineering, Hokkaido Un., 1986), pp. 89–104Google Scholar
  29. 29.
    D. Gloge, Weakly guiding fibers. Appl. Opt. 10(10), 2252–2258 (1971)ADSCrossRefGoogle Scholar
  30. 30.
    N. Takai, T. Asakura, Statistical properties of laser speckles produced under illumination from a multimode optical fiber. J. Opt. Soc. Am. 8, 1282 (1985)CrossRefGoogle Scholar
  31. 31.
    V. Doya, O. Legrand, F. Mortessagne, C. Miniatura, Speckle statistics in a chaotic multimode fiber. Phys. Rev. E 65(5.2), 056223 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995). (ISBN 0521417112)CrossRefGoogle Scholar
  33. 33.
    A. Classen, F. Waldmann, S. Giebel, R. Schneider, D. Bhatti, T. Mehringer, J. von Zanthier, Superresolving imaging of irregular arrays of thermal light sources using multiphoton interferences. arXiv: 1608.03340
  34. 34.
    J.D. Franson, Bell inequality for position and time. Phys. Rev. Lett. 63, 19 (1989)Google Scholar
  35. 35.
    M. Cassano, M. D’Angelo, A. Garuccio, T. Peng, Y. Shih, V. Tamma, Spatial interference between pairs of optical paths with a chaotic source. arXiv:1601.05045
  36. 36.
    V. Tamma, J. Seiler, Multipath correlation interference and controlled-NOT gate simulation with a thermal source. N. J. Phys. 18, 032002 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institut für Information und PhotonikUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations