Applied Physics B

, 123:196 | Cite as

Three-dimensional light bullets in a Bragg medium with carbon nanotubes

  • Alexander V. Zhukov
  • Roland Bouffanais
  • Mikhail B. Belonenko
  • Ilya S. Dvuzhilov
  • Yulia V. Nevzorova


We present a theoretical study of the propagation of three-dimensional extremely short electromagnetic pulses (a.k.a. light bullets) through a Bragg medium containing an immersed array of carbon nanotubes. We demonstrate the possible stable propagation of such light bullets. In particular, our results suggest these light bullets can carry information about the Bragg medium itself.



A. V. Zhukov and R. Bouffanais are financially supported by the SUTD-MIT International Design Centre (IDC).


  1. 1.
    Y. Silberberg, Opt. Lett. 15, 1281 (1990)ADSGoogle Scholar
  2. 2.
    P.M. Goorjian, Y. Silberberg, J. Opt. Soc. Am. B 14, 3253 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    B.A. Malomed, D. Mihalache, F. Wise, L. Torner, J. Opt. B 7, R53 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    D. Mihalache, Rom. J. Phys. 59, 295 (2014)Google Scholar
  5. 5.
    B. Malomed, L. Torner, F. Wise, D. Mihalache, J. Phys. B 49, 170502 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    G. Fibich, B. Ilan, Opt. Lett. 29, 887 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, Solitons and nonlinear wave equations (Academic Press, London, 1982)zbMATHGoogle Scholar
  8. 8.
    YuS Kivshar, G. Agrawal, Optical solitons: from fibers to photonic crystals (Academic Press, London, 2003)Google Scholar
  9. 9.
    T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Nanotechnology research directions: vision for nanotechnology in the next decade, eds. M.C. Roco, S. Williams, and P. Alivisatos (Springer, Dordrecht, 2000)Google Scholar
  11. 11.
    P.J.F. Harris, Carbon nanotubes and related structures (Cambridge University Press, Cambridge, 2009)Google Scholar
  12. 12.
    S. A. Maksimenko, G. Y. Slepyan, In handbook of nanotechnology. Nanometer structure: theory, modeling, and simulation (SPIE Press, Bellingham, 2004)Google Scholar
  13. 13.
    M.B. Belonenko, E.V. Demushkina, N.G. Lebedev, Phys. Solid State 50, 383 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    M.B. Belonenko, N.G. Lebedev, A.S. Popov, JETP Lett. 91, 461 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    A.V. Zhukov, R. Bouffanais, E.G. Fedorov, M.B. Belonenko, J. Appl. Phys. 114, 143106 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    H. Leblond, D. Mihalache, Phys. Rev. A 86, 043832 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    H. Leblond, D. Mihalache, Phys. Rep. 523, 61 (2013)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A.V. Zhukov, R. Bouffanais, E.G. Fedorov, M.B. Belonenko, J. Appl. Phys. 115, 203109 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    A.V. Zhukov, R. Bouffanais, H. Leblond, D. Mihalache, E.G. Fedorov, M.B. Belonenko, Eur. Phys. J. D 69, 242 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    A.V. Zhukov, R. Bouffanais, B.A. Malomed, H. Leblond, D. Mihalache, E.G. Fedorov, N.N. Rosanov, M.B. Belonenko, Phys. Rev. A 94, 053823 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    A.V. Zhukov, R. Bouffanais, M.B. Belonenko, N.N. Konobeeva, YuV Nevzorova, T.F. George, Eur. Phys. J. D 69, 129 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    D. Majus, G. Tamošauskas, I. Gražulevičiūtė, N. Garejev, A. Lotti, A. Couairon, D. Faccio, A. Dubietis, Phys. Rev. Lett. 112, 193901 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    I. Gražulevičiūtė, R. Šuminas, G. Tamošauskas, A. Couairon, A. Dubietis, Opt. Lett. 40, 3719 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    L.D. Landau, E.M. Lifshitz, The classical theory of fields, 4th edn. (Butterworth-Heinemann, Oxford, 2000)zbMATHGoogle Scholar
  25. 25.
    A.V. Zhukov, R. Bouffanais, E.G. Fedorov, J. Appl. Phys. 115, 203109 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    A.V. Zhukov, R. Bouffanais, N.N. Konobeeva, M.B. Belonenko, T.F. George, Europhys. Lett. 106, 37005 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    D.J. Frantzeskakis, H. Leblond, D. Mihalache, Rom. J. Phys. 59, 767 (2014)Google Scholar
  28. 28.
    S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Nature 386, 474 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    L.D. Landau, E.M. Lifshitz, Physical kinetics (Pergamon Press, Oxford, 1981)Google Scholar
  30. 30.
    J.W. Thomas, Numerical partial differential equations. Finite difference methods (Springer, New York, 1995)CrossRefzbMATHGoogle Scholar
  31. 31.
    A.S. Popov, M.B. Belonenko, N.G. Lebedev, A.V. Zhukov, M. Paliy, Eur. Phys. J. D 65, 635 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Alexander V. Zhukov
    • 1
  • Roland Bouffanais
    • 1
  • Mikhail B. Belonenko
    • 2
    • 3
  • Ilya S. Dvuzhilov
    • 3
  • Yulia V. Nevzorova
    • 3
  1. 1.Singapore University of Technology and DesignSingaporeSingapore
  2. 2.Laboratory of NanotechnologyVolgograd Institute of BusinessVolgogradRussia
  3. 3.Volgograd State UniversityVolgogradRussia

Personalised recommendations