Skip to main content
Log in

Surface plasmon resonances in liquid metal nanoparticles

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have shown significant suppression of resonant properties of metallic nanoparticles at the surface plasmon frequency during the phase transition “solid–liquid” in the basic materials of nanoplasmonics (Ag, Au). Using experimental values of the optical constants of liquid and solid metals, we have calculated nanoparticle plasmonic absorption spectra. The effect was demonstrated for single particles, dimers and trimers, as well as for the large multiparticle colloidal aggregates. Experimental verification was performed for single Au nanoparticles heated to the melting temperature and above up to full suppression of the surface plasmon resonance. It is emphasized that this effect may underlie the nonlinear optical response of composite materials containing plasmonic nanoparticles and their aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Book  Google Scholar 

  2. G. Shvets, I. Tsukerman (eds.), Plasmonics and Plasmonic Metamaterials. Analysis and Applications (World Scientific, Singapore, 2011)

    Google Scholar 

  3. M.I. Stockman, Opt. Express 19, 22029 (2011)

    Article  ADS  Google Scholar 

  4. V.V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009)

    Google Scholar 

  5. M.A. Garcia, J. Phys. D Appl. Phys. 44, 283001 (2011)

    Article  Google Scholar 

  6. J. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Elsevier Science, Oxford, 1984)

    Google Scholar 

  7. B.S. Luk’yanchuk, A.E. Miroshnichenko, M.I. Tribelsky, Y.S. Kivshar, A.R. Khokhlov, N. J. Phys. 14, 093022 (2012)

    Article  Google Scholar 

  8. G. Baffou, P. Berto, E.B. Ureña, R. Quidant, S. Monneret, J. Polleux, H. Rigneault, ACS Nano 7, 6478 (2013). (pMID: 23895209)

    Article  Google Scholar 

  9. A.D. Phan, T.-L. Phan, L.M. Woods, J. Appl. Phys. 114, 214306 (2013)

    Article  ADS  Google Scholar 

  10. A. Alabastri, A. Toma, M. Malerba, F.D. Angelis, R.P. Zaccaria, ACS Photonics 2, 115 (2015)

    Article  Google Scholar 

  11. A.P. Gavrilyuk, S.V. Karpov, Appl. Phys. B 97, 163 (2009)

    Article  ADS  Google Scholar 

  12. A.P. Gavrilyuk, S.V. Karpov, Appl. Phys. B 102, 65 (2010)

    Article  ADS  Google Scholar 

  13. A.E. Ershov, A.P. Gavrilyuk, S.V. Karpov, P.N. Semina, Appl. Phys. B 115, 547 (2014)

    Article  ADS  Google Scholar 

  14. C. Kittel, Introduction to Solid State Physics, 6th edn. (John Wiley and Sons Inc, New York, 1986)

    MATH  Google Scholar 

  15. L.D. Landau, L.P. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984)

    MATH  Google Scholar 

  16. M.V. Berry, I.C. Percival, Opt. Acta 33, 577 (1986)

    Article  ADS  Google Scholar 

  17. O.B. Wright, Phys. Rev. B 49, 9985 (1994)

    Article  ADS  Google Scholar 

  18. C.-K. Sun, F. Vallée, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 50, 15337 (1994)

    Article  ADS  Google Scholar 

  19. N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, F. Vallée, Phys. Rev. B 61, 16956 (2000)

    Article  ADS  Google Scholar 

  20. R.H.M. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B 51, 11433 (1995)

    Article  ADS  Google Scholar 

  21. T. Castro, R. Reifenberger, E. Choi, R.P. Andres, Phys. Rev. B 42, 8548 (1990)

    Article  ADS  Google Scholar 

  22. M. Otter, Zeitschrift für Physik 161, 539 (1961)

    Article  ADS  Google Scholar 

  23. J.C. Miller, Philos. Mag. 20, 1115 (1969)

    Article  ADS  Google Scholar 

  24. K. Ujihara, J. Appl. Phys. 43, 2376 (1972)

    Article  ADS  Google Scholar 

  25. O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, A. Kotko, Surf. Sci. 608, 275 (2013)

    Article  ADS  Google Scholar 

  26. O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, A.V. Kotko, J. Verdal, A.O. Pinchuk, Plasmonics 7, 685 (2012)

    Article  Google Scholar 

  27. J. D’Ans, J. Bartels, P.T. Bruggencate, A. Eucken, G. Joos, W.A. Roth, H. Borchers, H. Hausen, K.-H. Hellwege, K. Schäfer, E. Schmidt, Landolt-Börnstein: Zahlenwerte und Funktionen, vol. 4, 6th edn. (Springer, Berlin, 1957)

    Google Scholar 

  28. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  29. E.A. Taft, H.R. Philipp, Phys. Rev. 121, 1100 (1961)

    Article  ADS  Google Scholar 

  30. G.S. Arnold, Appl. Opt. 23, 1434 (1984)

    Article  ADS  Google Scholar 

  31. M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander, C.A. Ward, Appl. Opt. 22, 1099 (1983)

    Article  ADS  Google Scholar 

  32. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    MATH  Google Scholar 

  33. M. Bass, L. Liou, J. Appl. Phys. 56, 184 (1984)

    Article  ADS  Google Scholar 

  34. S.R. Nagel, S.E. Schnatterly, Phys. Rev. B 9, 1299 (1974)

    Article  ADS  Google Scholar 

  35. J.M. Ziman, Electrons and Phonons (Oxford University Press, Oxford, 1960)

    MATH  Google Scholar 

  36. C. Oubre, P. Nordlander, J. Phys. Chem. B 108, 17740 (2004)

    Article  Google Scholar 

  37. S. Underwood, P. Mulvaney, Langmuir 10, 3427 (1994)

    Article  Google Scholar 

  38. S. Inasawa, M. Sugiyama, Y. Yamaguchi, J. Phys. Chem. B 109, 3104 (2005). (pMID: 16851329)

    Article  Google Scholar 

  39. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998)

    Book  Google Scholar 

  40. V.S. Gerasimov, A.E. Ershov, S.V. Karpov, A.P. Gavrilyuk, V.I. Zakomirnyi, I.L. Rasskazov, H. Ågren, S.P. Polyutov, Opt. Mater. Express 7, 555 (2017)

    Article  Google Scholar 

  41. V.A. Markel, V.M. Shalaev, E.B. Stechel, W. Kim, R.L. Armstrong, Phys. Rev. B 53, 2425 (1996)

    Article  ADS  Google Scholar 

  42. S.V. Karpov, A.K. Popov, V.V. Slabko, Tech. Phys. 48, 749 (2003)

    Article  Google Scholar 

  43. V.P. Safonov, V.M. Shalaev, V.A. Markel, Y.E. Danilova, N.N. Lepeshkin, W. Kim, S.G. Rautian, R.L. Armstrong, Phys. Rev. Lett. 80, 1102 (1998)

    Article  ADS  Google Scholar 

  44. D. Dalacu, L. Martinu, Appl. Phys. Lett. 77, 4283 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gerasimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershov, A.E., Gerasimov, V.S., Gavrilyuk, A.P. et al. Surface plasmon resonances in liquid metal nanoparticles. Appl. Phys. B 123, 182 (2017). https://doi.org/10.1007/s00340-017-6755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6755-2

Navigation