Applied Physics B

, 123:130 | Cite as

Black phosphorus mid-infrared photodetectors

Article

Abstract

Few-layer black phosphorus (BP) has emerged as a promising 2D material for photodetection in the mid-infrared spectral range given its narrow bandgap. However, a comprehensive understanding of BP photodetector’s response in the mid-infrared is still lacking. In this paper, we study the photoresponse of few-layer BP photodetector in the mid-infrared range from 2.5 to 3.7 µm. We identify broadband photoresponse of BP photodetectors in the mid-infrared and observe saturation of the response with optical power. Through frequency and time domain measurements, we have also identified the two dominate mechanisms in our device to be due to the photovoltaic and photogating effects. Our results provide valuable information for optimization of BP mid-infrared photodetectors toward rivaling the current infrared photodetection technology based on compound semiconductors.

References

  1. 1.
    L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Nat Nanotecnol 9 (5), 372–377 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, ACS Nano 8(4), 4033–4041 (2014)CrossRefGoogle Scholar
  3. 3.
    F. Xia, H. Wang, Y. Jia, Nat. Commun. 5, 4458–4458 (2014)ADSGoogle Scholar
  4. 4.
    A. Castellanos-Gomez, J. Phys. Chem. Lett. 4280–4291 (2015)Google Scholar
  5. 5.
    S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, A. Roelofs, Nano Lett. 14(10), 5733–5739 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    T. Low, A.S. Rodin, A. Carvalho, Y.J. Jiang, H. Wang, F.N. Xia, A.H.C. Neto, Phys. Rev. B 90(7), 075434 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    J. Kim, S.S. Baik, S.H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H.J. Choi, K.S. Kim, Science 349(6249), 723–726 (2015)CrossRefGoogle Scholar
  8. 8.
    Mueller, T., F. Xia, P. Avouris, Nat. Photonics 4, 297–301 (2010).CrossRefGoogle Scholar
  9. 9.
    T. Low, M. Engel, M. Steiner, P. Avouris, Phys. Rev. B 90(8), 081408 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    M. Buscema, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Nano Lett. 14(6), 3347–3352 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    M. Engel, M. Steiner, P. Avouris, Nano Lett. 14(11), 6414–6417 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    N. Youngblood, C. Chen, S.J. Koester, M. Li, Nat. Photonics 9(4), 247–252 (2015)ADSGoogle Scholar
  13. 13.
    X. Chen, Y. Wu, Z. Wu, Y. Han, S. Xu, L. Wang, W. Ye, T. Han, Y. He, Y. Cai, N. Wang, Nat. Commun. 6, 7315 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Long, G., D. Maryenko, J. Shen, S. Xu, J. Hou, Z. Wu, W.K. Wong, T. Han, J. Lin, Y. Cai, R. Lortz, N. Wang, Nano Lett. Article ASAP (2016).Google Scholar
  15. 15.
    Y. Yao, A.J. Hoffman, C.F. Gmachl, Nat. Photon 6(7), 432–439 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    Schliesser, A., N. Picqué, T.W. Hänsch, Nat. Photonics 6(7), 440–449 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    K. Luke, Y. Okawachi, M.R. Lamont, A.L. Gaeta, M. Lipson, Opt. Lett. 40(21), 4823–4826 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Petersen, C.R., U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang, Nat. Photon 8(11), 830–834 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    Dereniak, E.L., G.D. Boreman, Infrared detectors and systems, New York: Wiley. xxvii, p.561 (1996) (Wiley series in pure and applied optics)Google Scholar
  20. 20.
    R.A. Soref, S.J. Emelett, A.R. Buchwald, J. Opt. A 8(10), 840–848 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Soref, R., Nat. Photonics 4 (8), 495–497 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. Deng, C. Li, S.-J. Han, H. Wang, Q. Xia, T.-P. Ma, T. Mueller, F. Xia, Nano Lett. 16(7), 4648–4655 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    L. Li, J. Kim, C. Jin, G.J. Ye, D.Y. Qiu, F.H. da Jornada, Z. Shi, L. Chen, Z. Zhang, F. Yang, K. Watanabe, T. Taniguchi, W. Ren, S.G. Louie, X.H. Chen, Y. Zhang, F. Wang, Nat Nanotechnol (2016)Google Scholar
  24. 24.
    G. Zhang, S. Huang, A. Chaves, C. Song, V.O. Özçelik, T. Low, H. Yan, Nat. Commun. 8, 14071 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A.M. Andrews, W. Schrenk, G. Strasser, T. Mueller, Nano Lett. 12(6), 2773–2777 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    M. Buscema, D.J. Groenendijk, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Nat. Commun. 5, 4651 (2014)CrossRefGoogle Scholar
  27. 27.
    L.A.A. Pettersson, L.S. Roman, O. Inganäs, J. Appl. Phys. 86(1), 487 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Zhang, G., A. Chaves, S. Huang, C. Song, T. Low, H. Yan, arXiv preprint arXiv:1607.08049 (2016).Google Scholar
  29. 29.
    F. Wang, A. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. White, W.I. Milne, A.C. Ferrari, Nat. Nanotechnol. 3(12), 738–742 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    M.M. Furchi, D.K. Polnyushkin, A. Pospischil, T. Mueller, Nano Lett. 14(11), 6165–6170 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.University of Science and Technology BeijingBeijingChina
  2. 2.University of Science and Technology of ChinaHefeiChina
  3. 3.Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations