Advertisement

Applied Physics B

, 123:110 | Cite as

“Simultaneous measurement of flame impingement and piston surface temperatures in an optically accessible spark ignition engine”

  • Carl-Philipp DingEmail author
  • Rene Honza
  • Benjamin Böhm
  • Andreas Dreizler
Article

Abstract

This paper shows the results of spatially resolved temperature measurements of the piston surface of an optically accessible direct injection spark ignition engine during flame impingement. High-speed thermographic phosphor thermometry (TPT), using Gd3Ga5O12:Cr,Ce, and planar laser-induced fluorescence of the hydroxyl radical (OH-PLIF) were used to investigate the temperature increase and the time and position of flame impingement at the piston surface. Measurements were conducted at two operating cases and showed heating rates of up to 16,000 K/s. The OH-PLIF measurements were used to localize flame impingement and calculate conditioned statistics of the temperature profiles. The TPT coating was characterized and its influence on the temperature measurements evaluated.

Keywords

Biot Number Crank Angle Degree Piston Surface Thermographic Phosphor Phosphorescence Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CA50%

Crank angle degree where 50% of the heat is released

CAD

Crank angle degree

CADdQmax

Crank angle degree of maximum heat release

CADPmax

Crank angle degree of maximum pressure

CMOS

Complementary metal–oxide–semiconductor

COV

Coefficient of variation

FWHM

Full width half maximum

HCCI

Homogeneous charge compression ignition

IC

Internal combustion

IMEP

Indicated mean effective pressure

PLIF

Planar laser-induced fluorescence

OH

Hydroxyl radical

Std

Standard deviation

TPT

Thermographic phosphor thermography

UV

Ultraviolet

Variables

a

Thermal diffusivity

Bi

Biot number

cp

Heat capacity

∆T

Temperature difference

Fo

Fourier number

k

Heat conductivity

L

Length

p

Pressure

t

Time

α

Heat transfer coefficient

δ

Thickness

λ

Air/fuel ratio

μ

Absorption coefficient

ρ

Density

Indices

abs

Absorption

c

Coating

g

Gas

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of the DFG (Deutsche Forschungsgemeinschaft) project DR 374/7 − 2 and the Gottfried Wilhelm Leibniz program. The support of Prof. Albert and the Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, in determining the thermographic phosphor properties, is acknowledged.

References

  1. 1.
    S.W. Allison, G.T. Gillies, Rev. Sci. Instrum. 68, 2615 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    J. Brübach, C. Pflitsch, A. Dreizler, B. Atakan, Prog. Energy Combust. Sci. 39, 37 (2013)CrossRefGoogle Scholar
  3. 3.
    J.S. Armfield, R.L. Graves, D.L. Beshears, M.R. Cates, T.V. Smith, S.W. Allison, Phosphor thermometry for internal combustion engines, in: International Spring Fuels & Lubricants Meeting & Exposition (SAE International400 Commonwealth Drive, Warrendale, PA, United States 1997)Google Scholar
  4. 4.
    C. Wilhelmsson, A. Vressner, P. Tunestål, B. Johansson, G. Särner, M. Aldén, Combustion chamber wall temperature measurement and modeling during transient HCCI operation, in: Powertrain & Fluid Systems Conference & Exhibition (SAE International 2005)Google Scholar
  5. 5.
    T. Aizawa, H. Kosaka, SAE Int. J. Fuels Lubr. 1, 549 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Aldén, A. Omrane, M. Richter, G. Särner, Prog. Energy Combust. Sci. 37, 422 (2011)CrossRefGoogle Scholar
  7. 7.
    N. Fuhrmann, C. Litterscheid, C.-P. Ding, J. Brübach, B. Albert, A. Dreizler, Appl. Phys. B 116, 293 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    J.T. Kashdan, G. Bruneaux, Laser-induced phosphorescence measurements of combustion chamber surface temperature on a single-cylinder diesel engine, in: SAE International Powertrains, Fuels and Lubricants Meeting (SAE International 2011)Google Scholar
  9. 9.
    K. Fukui, Y. Wakisaka, K. Nishikawa, Y. Hattori, H. Kosaka, A. Kawaguchi, Development of instantaneous temperature measurement technique for combustion chamber surface and verification of temperature swing concept, in: SAE 2016 World Congress and Exhibition (SAE International 2016)Google Scholar
  10. 10.
    N. Fuhrmann, M. Schneider, C.-P. Ding, J. Brübach, A. Dreizler, Meas. Sci. Technol. 24, 095203 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    H. Becker, A. Arnold, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, W. Pfister, Appl. Phys. B 50, 473 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    C.F. Kaminski, J. Hult, M. Aldén, Appl. Phys. B. 68, 757 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    J.D. Miller, M. Slipchenko, T.R. Meyer, N. Jiang, W.R. Lempert, J.R. Gord, Opt. Lett. 34, 1309 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    S.H.R. Müller, B. Böhm, M. Gleißner, S. Arndt, A. Dreizler, Appl. Phys. B 100, 447 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    C. Knappe, M. Algotsson, P. Andersson, M. Richter, M. Tunér, B. Johansson, M. Aldén, Combust. Flame 160, 1466 (2013)CrossRefGoogle Scholar
  16. 16.
    B. Atakan, D. Roskosch, Proc. Combust. Inst. 34, 3603 (2013)CrossRefGoogle Scholar
  17. 17.
    E. Baum, B. Peterson, B. Böhm, A. Dreizler, Flow Turbul. Combust. 92, 269 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Brübach, J. Janicka, A. Dreizler, Optics Lasers Eng. 47, 75 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    VDI-Wärmeatlas, (Springer, Berlin, 2013)Google Scholar
  20. 20.
    G.P. Merker, C. Schwarz, Grundlagen Verbrennungsmotoren. (Vieweg + Teubner, Wiesbaden, 2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.FG Reaktive Strömungen und Messtechnik, MaschinenbauTechnische Universität DarmstadtDarmstadtGermany
  2. 2.FG Energie- und Kraftwerkstechnik, MaschinenbauTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations