Applied Physics B

, 123:99 | Cite as

Laser ablation production of Ba, Ca, Dy, Er, La, Lu, and Yb ions

  • S. OlmschenkEmail author
  • P. Becker


We use a pulsed nitrogen laser to produce atomic ions by laser ablation, measuring the relative ion yield for several elements, including some that have only recently been proposed for use in cold trapped ion experiments. For barium, we monitor the ion yield as a function of the number of applied ablation pulses for different substrates. We also investigate the ion production as a function of the pulse energy, and the efficiency of loading an ion trap as a function of radiofrequency voltage.


Laser Ablation Ablation Target Ablation Pulse Average Peak Height Linear Quadrupole Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank E. Peik for useful discussions about laser ablation; D. Hanneke for useful discussions about SHG cavity design; P. Banner, J. Hankes, and A. Nelson for technical contributions to the ion trap setup; and D. Burdick for expert machining. P.B. acknowledges support from the J. Reid & Polly Anderson Endowed Fund at Denison University. This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office under contract/grant number W911NF-13-1-0410; Research Corporation for Science Advancement through Cottrell College Science Award 22646; and Denison University. Specific product citations are for the purpose of clarification only, and are not an endorsement by the authors, the U. S. Army Research Laboratory, the U. S. Army Research Office, Research Corporation for Science Advancement, or Denison University.


  1. 1.
    A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P. Schmidt, Rev. Mod. Phys. 87, 637 (2015). doi: 10.1103/RevModPhys.87.637 ADSCrossRefGoogle Scholar
  2. 2.
    A. Härter, J. Hecker Denschlag, Contemp. Phys. 55, 33 (2014). doi: 10.1080/00107514.2013.854618 ADSCrossRefGoogle Scholar
  3. 3.
    J.P. Karr, J. Phys. B 42, 154018 (2009). doi: 10.1088/0953-4075/42/15/154018 ADSCrossRefGoogle Scholar
  4. 4.
    C. Orzel, Phys. Scr. 86, 068101 (2012). doi: 10.1088/0031-8949/86/06/068101 ADSCrossRefGoogle Scholar
  5. 5.
    C. Monroe, J. Kim, Science 339, 1164 (2013). doi: 10.1126/science.1231298 ADSCrossRefGoogle Scholar
  6. 6.
    P.D.D. Schwindt, Y.Y. Jau, H. Partner, A. Casias, A.R. Wagner, M. Moorman, R.P. Manginell, J.R. Kellogg, J.D. Prestage, Rev. Sci. Inst. 87, 053112 (2016). doi: 10.1063/1.4948739 ADSCrossRefGoogle Scholar
  7. 7.
    D. De Motte, A.R. Grounds, M. Rehák, A. Rodriguez Blanco, B. Lekitsch, G.S. Giri, P. Neilinger, G. Oelsner, E. Il’ichev, M. Grajcar, W.K. Hensinger, Quantum Inf. Proc. 15, 5385 (2016). doi: 10.1007/s11128-016-1368-y
  8. 8.
    M.F. Brandl, M.W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R.R. Paiva, S. Möller, N. Daniilidis, H. Häffner, V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U.G. Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, R. Blatt, Rev. Sci. Inst. 87, 113103 (2016). doi: 10.1063/1.4966970 ADSCrossRefGoogle Scholar
  9. 9.
    H.G. Dehmelt, Adv. At. Mol. Phys. 3, 53 (1967). doi: 10.1016/S0065-2199(08)60170-0 ADSCrossRefGoogle Scholar
  10. 10.
    N. Kjaergaard, L. Hornekaer, A.M. Thommesen, Z. Videsen, M. Drewsen, Appl. Phys. B 71, 207 (2000). doi: 10.1007/s003400000296 ADSCrossRefGoogle Scholar
  11. 11.
    S. Gulde, D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, W. Hogervorst, Appl. Phys. B 73, 861 (2001). doi: 10.1007/s003400100749 ADSCrossRefGoogle Scholar
  12. 12.
    D.M. Lucas, A. Ramos, J.P. Home, M.J. McDonnell, S. Nakayama, J. Stacey, S.C. Webster, D.N. Stacey, A.M. Steane, Phys. Rev. A 69, 012711 (2004). doi: 10.1103/PhysRevA.69.012711 ADSCrossRefGoogle Scholar
  13. 13.
    U. Tanaka, H. Matsunishi, I. Morita, S. Urabe, Appl. Phys. B 81, 795 (2005). doi: 10.1007/s00340-005-1967-2 ADSCrossRefGoogle Scholar
  14. 14.
    L. Deslauriers, M. Acton, B.B. Blinov, K. Brickman, P.C. Haljan, W.K. Hensinger, D. Hucul, S. Katnik, R.N. Kohn Jr., P.J. Lee, M.J. Madsen, P. Maunz, S. Olmschenk, D.L. Moehring, D. Stick, J. Sterk, M. Yeo, K.C. Younge, C. Monroe, Phys. Rev. A 74, 063421 (2006). doi: 10.1103/PhysRevA.74.063421 ADSCrossRefGoogle Scholar
  15. 15.
    M. Brownnutt, V. Letchumanan, G. Wilpers, R. Thompson, P. Gill, A. Sinclair, Appl. Phys. B 87, 411 (2007). doi: 10.1007/s00340-007-2624-8 ADSCrossRefGoogle Scholar
  16. 16.
    A.V. Steele, L.R. Churchill, P.F. Griffin, M.S. Chapman, Phys. Rev. A 75, 053404 (2007). doi: 10.1103/PhysRevA.75.053404 ADSCrossRefGoogle Scholar
  17. 17.
    B. Wang, J.W. Zhang, C. Gao, L.J. Wang, Opt. Express 19, 16438 (2011). doi: 10.1364/OE.19.016438 ADSCrossRefGoogle Scholar
  18. 18.
    M. Johanning, A. Braun, D. Eiteneuer, C. Paape, C. Balzer, W. Neuhauser, C. Wunderlich, Appl. Phys. B 103, 327 (2011). doi: 10.1007/s00340-011-4502-7 ADSCrossRefGoogle Scholar
  19. 19.
    G. Leschhorn, T. Hasegawa, T. Schaetz, Appl. Phys. B 108, 159 (2012). doi: 10.1007/s00340-012-5101-y ADSCrossRefGoogle Scholar
  20. 20.
    R.G. DeVoe, C. Kurtsiefer, Phys. Rev. A 65, 063407 (2002). doi: 10.1103/PhysRevA.65.063407 ADSCrossRefGoogle Scholar
  21. 21.
    R.D. Graham, S. Chen, T. Sakrejda, J. Wright, Z. Zhou, B.B. Blinov, AIP Adv. 4, 057124 (2014). doi: 10.1063/1.4879817 ADSCrossRefGoogle Scholar
  22. 22.
    M. Cetina, A. Grier, J. Campbell, I. Chuang, V. Vuletić, Phys. Rev. A 76, 041401(R) (2007). doi: 10.1103/PhysRevA.76.041401 ADSCrossRefGoogle Scholar
  23. 23.
    J.M. Sage, A.J. Kerman, J. Chiaverini, Phys. Rev. A 86, 013417 (2012). doi: 10.1103/PhysRevA.86.013417 ADSCrossRefGoogle Scholar
  24. 24.
    R.E. Russo, Appl. Spectrosc. 49, 14A (1995)ADSCrossRefGoogle Scholar
  25. 25.
    P.R. Willmott, J.R. Huber, Rev. Mod. Phys. 72, 315 (2000). doi: 10.1103/RevModPhys.72.315 ADSCrossRefGoogle Scholar
  26. 26.
    R.J. Hendricks, D.M. Grant, P.F. Herskind, A. Dantan, M. Drewsen, Appl. Phys. B 88, 507 (2007). doi: 10.1007/s00340-007-2698-3 ADSCrossRefGoogle Scholar
  27. 27.
    K. Sheridan, W. Lange, M. Keller, Appl. Phys. B 104, 755 (2011). doi: 10.1007/s00340-011-4563-7 ADSCrossRefGoogle Scholar
  28. 28.
    R.D. Knight, App. Phys. Lett. 38, 221 (1981). doi: 10.1063/1.92315 ADSCrossRefGoogle Scholar
  29. 29.
    C.G. Gill, B. Daigle, M.W. Blades, Spectrochim. Acta Part B 46, 1227 (1991). doi: 10.1016/0584-8547(91)80117-L ADSCrossRefGoogle Scholar
  30. 30.
    Y. Matsuo, H. Maeda, M. Takami, Hyperfine Interact. 74, 269 (1992). doi: 10.1007/BF02398636 ADSCrossRefGoogle Scholar
  31. 31.
    C.G. Gill, A.W. Garrett, P.H. Hemberger, N. Nogar, Spectrochim. Acta Part B 51, 851 (1996). doi: 10.1016/0584-8547(96)01467-X ADSCrossRefGoogle Scholar
  32. 32.
    Y. Hashimoto, L. Matsuoka, H. Osaki, Y. Fukushima, S. Hasegawa, Jpn. J. Appl. Phys. 45, 7108 (2006). doi: 10.1143/JJAP.45.7108 ADSCrossRefGoogle Scholar
  33. 33.
    D.R. Leibrandt, R.J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K.R. Brown, I.L. Chuang, Phys. Rev. A 76, 055403 (2007). doi: 10.1103/PhysRevA.76.055403 ADSCrossRefGoogle Scholar
  34. 34.
    T. Kwapień, U. Eichmann, W. Sandner, Phys. Rev. A 75, 063418 (2007). doi: 10.1103/PhysRevA.75.063418 ADSCrossRefGoogle Scholar
  35. 35.
    T.A. Schmitz, G. Gamez, P.D. Setz, L. Zhu, R. Zenobi, Anal. Chem. 80, 6537 (2008). doi: 10.1021/ac8005044 CrossRefGoogle Scholar
  36. 36.
    K. Zimmermann, M.V. Okhapkin, O.A. Herrera-Sancho, E. Peik, Appl. Phys. B 107, 883 (2012). doi: 10.1007/s00340-012-4884-1 ADSCrossRefGoogle Scholar
  37. 37.
    V.H.S. Kwong, Phys. Rev. A 39, 4451 (1989). doi: 10.1103/PhysRevA.39.4451 ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    C.J. Campbell, A.V. Steele, L.R. Churchill, M.V. DePalatis, D.E. Naylor, D.N. Matsukevich, A. Kuzmich, M.S. Chapman, Phys. Rev. Lett. 102, 233004 (2009). doi: 10.1103/PhysRevLett.102.233004 ADSCrossRefGoogle Scholar
  39. 39.
    S. Olmschenk, B. Bedacht, N. Theisen, Bull. Am. Phys. Soc. 59 (2014).
  40. 40.
    M. Lepers, Y. Hong, J.F. Wyart, O. Dulieu, Phys. Rev. A 93, 011401(R) (2016). doi: 10.1103/PhysRevA.93.011401 ADSCrossRefGoogle Scholar
  41. 41.
    W.C. Wiley, I.H. McLaren, Rev. Sci. Inst. 26, 1150 (1955). doi: 10.1063/1.1715212 ADSCrossRefGoogle Scholar
  42. 42.
    C. Champenois, J. Phys. B 42, 154002 (2009). doi: 10.1088/0953-4075/42/15/154002 ADSCrossRefGoogle Scholar
  43. 43.
    I.S. Gilmore, M.P. Seah, Appl. Surf. Sci. 144, 113 (1999). doi: 10.1016/S0169-4332(98)00779-X ADSCrossRefGoogle Scholar
  44. 44.
    S.T. Sullivan, The motion trap: a hybrid atom-ion trap system for experiments in cold-chemistry and the production of cold polar molecular ions. Ph.D. thesis, UCLA (2013).
  45. 45.
    L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T.W. Hänsch, Op. Comm. 117, 541 (1995). doi: 10.1016/0030-4018(95)00146-Y ADSCrossRefGoogle Scholar
  46. 46.
    A.C. Wilson, C. Ospelkaus, A.P. VanDevender, J.A. Mlynek, K.R. Brown, D. Leibfried, D.J. Wineland, Appl. Phys. B 105, 741 (2011). doi: 10.1007/s00340-011-4771-1 ADSCrossRefGoogle Scholar
  47. 47.
    H. Lo, J. Alonso, D. Kienzler, B.C. Keitch, L.E. de Clercq, V. Negnevitsky, J.P. Home, Appl. Phys. B 114, 17 (2014). doi: 10.1007/s00340-013-5605-0 ADSCrossRefGoogle Scholar
  48. 48.
    A.E. Hussein, P.K. Diwakar, S.S. Harilal, A. Hassanein, J. Appl. Phys. 113, 143305 (2013). doi: 10.1063/1.4800925 ADSCrossRefGoogle Scholar
  49. 49.
    T. Bergmann, T.P. Martin, H. Schaber, Rev. Sci. Inst. 61, 2592 (1990). doi: 10.1063/1.1141843 ADSCrossRefGoogle Scholar
  50. 50.
    S.J. Schowalter, K. Chen, W.G. Rellergert, S.T. Sullivan, E.R. Hudson, Rev. Sci. Inst. 83, 043103 (2012). doi: 10.1063/1.3700216 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Denison UniversityGranvilleUSA

Personalised recommendations