Applied Physics B

, 123:74 | Cite as

Quantitative effects of rapid heating on soot-particle sizing through analysis of two-pulse LII

  • E. CenkerEmail author
  • W. L. Roberts


During the rapid laser pulse heating and consecutive cooling in laser-induced incandescence (LII), soot particles may undergo thermal annealing and sublimation processes which lead to a permanent change in its optical properties and its primary particle size, respectively. Overall, effects of these two processes on soot and LII model-based particle sizing are investigated by measuring the two-color time-resolved (2C-TiRe) LII signal decay from in-flame soot after two consecutive laser pulses at 1064-nm wavelength. Experiments are carried out on a non-premixed laminar ethylene/air flame from a Santoro burner with both low and moderate laser fluences suitable for particle sizing. The probe volume is set to a radial position close to the flame axis where the soot particles are known to be immature or less graphitic. With the first pulse, soot is pre-heated, and the LII signal after the consecutive second pulse is used for analysis. The two-color incandescence emission technique is used for the pyrometric determination of the LII-heated peak soot temperature at the second pulse. A new LII simulation tool is developed which accounts for particle heating via absorption and annealing, and cooling via sublimation, conduction, and radiation with various existing sub-models from the literature. The same approach of using two laser pulses is implemented in the simulations. Measurements indicate that thermal annealing and associated absorption enhancement becomes important at laser fluences above 0.17 J/cm2 for the immature in-flame soot. After a heating pulse at 0.33 J/cm2, the increase of the soot absorption function is calculated as 35% using the temperature measured at the second pulse and an absorption model based on the Rayleigh approximation. Present annealing model, on the other hand, predicts graphitization of soot even in the absence of laser heating at typical flame temperatures. Recorded experimental LII signal decays and LII-heated peak soot temperature information are used for particle sizing with the LII modeling to assess the effects of sublimation. A reduction in particle size due to sublimation starts at a laser fluence of 0.1 J/cm2 for the in-flame soot. After a heating pulse at 0.33 J/cm2, the particle loses 55% of its initial mass.


Pump Pulse Soot Particle Probe Pulse Flame Temperature Soot Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).


  1. 1.
    L.A. Melton, Appl. Opt. 23, 2201–2208 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    C. Schulz, B.F. Kock, M. Hofmann, H.A. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333–354 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    R.L. Vander Wal, M.Y. Choi, K.O. Lee, Combust. Flame 102, 200–204 (1995)CrossRefGoogle Scholar
  4. 4.
    R.L. Vander Wal, K.A. Jensen, Appl. Opt. 37, 1607–1616 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    R.L. Vander Wal, M.Y. Choi, Carbon 37, 231–239 (1999)CrossRefGoogle Scholar
  6. 6.
    S. De Iuliis, F. Cignoli, S. Maffi, G. Zizak, Appl. Phys. B 104, 321–330 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    H.A. Michelsen, A.V. Tivanski, M.K. Gilles, L.H. van Poppel, M.A. Dansson, P.R. Buseck, Appl. Opt. 46, 959–977 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    R.P. Bambha, M.A. Dansson, P.E. Schrader, H.A. Michelsen, Appl. Phys. B 112, 343–358 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Appl. Phys. B 67, 115–123 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    M. Saffaripour, K.-P. Geigle, D.R. Snelling, G.J. Smallwood, K.A. Thomson, Appl. Phys. B 119, 621–642 (2015)CrossRefGoogle Scholar
  11. 11.
    H.A. Michelsen, J. Chem. Phys. 118, 7012–7045 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    X. López-Yglesias, P.E. Schrader, H.A. Michelsen, J. Aerosol. Sci. 75, 43–64 (2014)CrossRefGoogle Scholar
  13. 13.
    R.J. Santoro, H.G. Semerjian, R.A. Dobbins, Combust. Flame 51, 203–218 (1983)CrossRefGoogle Scholar
  14. 14.
    E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B 118, 169–183 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    R.J. Santoro, T.T. Yeh, J.J. Horvath, H.G. Semerjian, Combust. Sci. Technol. 53, 89–115 (1987)CrossRefGoogle Scholar
  16. 16.
    F. Liu, D.R. Snelling, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 623–636 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    E. Cenker, K. Kondo, G. Bruneaux, T. Dreier, T. Aizawa, C. Schulz, Appl. Phys. B 119, 765–776 (2015)CrossRefGoogle Scholar
  18. 18.
    B.C. Connelly, Quantitative characterization of steady and time-varying, sooting, laminar diffusion flames using optical techniques (Doctoral dissertation), PhD thesis, Yale University (2009)Google Scholar
  19. 19.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö. L. Gülder, Combust. Flame 136, 180–190 (2004)CrossRefGoogle Scholar
  20. 20.
    P.B. Kuhn, B. Ma, B.C. Connelly, M.D. Smooke, M.B Long, Proc. Combust. Inst. 33, 743–750 (2011)CrossRefGoogle Scholar
  21. 21.
    H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann et al., Appl. Phys. B 87, 503–521 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    M. Hofmann, B.F. Kock, T. Dreier, H. Jander, C. Schulz, Appl. Phys. B 90, 629–639 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127–138 (2000)CrossRefGoogle Scholar
  24. 24.
    J.M. Mitrani, M.N. Shneider, B.C. Stratton, Y. Raitses, Appl. Phys. Lett. 108, 54101 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    J. Johnsson, H. Bladh, N.-E. Olofsson, P.-E. Bengtsson, Appl. Phys. B 112, 321–332 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    L.J. Dunne, P.F. Nolan, J. Munn, M. Terrones, T. Jones, P. Kathirgamanathan, J. Fernandez, A.D. Hudson, J. Phys. Condens. Matter 9, 10661–10673 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    W.S. Bacsa, W.A. de Heer, D. Ugarte, A. Châtelain, Chem. Phys. Lett. 211, 346–352 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transf. 49, 777–788 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Clean Combustion Research Center (CCRC)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations