Advertisement

Applied Physics B

, 123:44 | Cite as

Spectral-temporal encoding and decoding of the femtosecond pulses sequences with a THz repetition rate

  • A. N. Tcypkin
  • S. E. Putilin
Article
  • 167 Downloads

Abstract

Experimental and numerical modeling techniques demonstrated the possibilities of the spectral-time encoding and decoding for time division multiplexing sequence of femtosecond subpulses with a repetition rate of up to 6.4 THz. The sequence was formed as a result of the interference of two phase-modulated pulses. We report the limits of the application of the developed method of controlling formed sequence at the spectral-temporal coding.

Keywords

Signal Pulse Femtosecond Pulse Nonlinear Crystal Spatial Light Modulator Michelson Interferometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was partially financially supported by the Government of the Russian Federation, Grant 074-U01. The publication is prepared as a part of carrying out the state contract Scientific research providing.

References

  1. 1.
    A.H. Zewail, J. Phys. Chem. A 104(5660), 24 (2000)Google Scholar
  2. 2.
    A.M. Weiner, D.E. Leaird, G.P. Wiederrecht, K.A. Nelson, Science 247(1317), 4948 (1990)Google Scholar
  3. 3.
    Y. Liu, S. Park, A.M. Weiner, Opt. Lett. 21(1762), 21 (1996)Google Scholar
  4. 4.
    M.A. Bakhtin, S.A. Kozlov, Opt. Spectrosc. 98, 425 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    A.M. Weiner, J.P. Heritage, E.M. Kirschner, JOSA B 5(1563), 8 (1988)Google Scholar
  6. 6.
    A.M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    P.C. Sun, Y.T. Mazurenko, W.S.C. Chang, P.K.L. Yu, Y. Fainman, Opt. Lett. 20(1728), 16 (1995)Google Scholar
  8. 8.
    D.M. Marom, D. Panasenko, P.-C. Sun, Y. Fainman, Opt. Lett. 24(563), 8 (1999)Google Scholar
  9. 9.
    A.N. Tsypkin, Y.A. Komarova, S.E. Putilin, A.V. Okishev, S.A. Kozlov, Appl. Opt. 54(2113), 8 (2015)Google Scholar
  10. 10.
    A.N. Tsypkin, S.E. Putilin, S.A. Kozlov, Opt. Spectrosc. 114(863), 6 (2013)Google Scholar
  11. 11.
    YuT Mazurenko, Opt. Spectrosc. 59, 35 (1985)ADSGoogle Scholar
  12. 12.
    K. Ema, M. Kuwata-Gonokami, F. Shimizu, Appl. Phys. Lett. 59, 2799 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    M.C. Nuss, M. Li, T.H. Chiu, A.M. Weiner, A. Partovi, Opt. Lett. 19, 664 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    YuT Mazurenko, A.G. Spiro, S.E. Putilin, A.G. Beliaev, E.B. Verkhovsky, Opt. Commun. 118(594), 5–6 (1995)Google Scholar
  15. 15.
    P.C. Sun, Y.T. Mazurenko, Y. Fainman, J. Opt. Soc. Am. A 14, 1159 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    A.M. Kanan, A.M. Weiner, J. Opt. Soc. Am. B 15, 1242 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    J. Ishi, H. Kunugita, K. Ema, T. Ban, T. Kondo, Appl. Phys. Lett. 77, 3487 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    YuT Mazurenko, Opt. Spectrosc. 57, 8 (1984)ADSGoogle Scholar
  19. 19.
    Y.T. Mazurenko, Appl. Phys. B 50, 101113 (1990)CrossRefGoogle Scholar
  20. 20.
    C. Corsi, A. Tortora, M. Bellini, Appl. Phys. B 77(285–290), 2–3 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Photonics and Optical Information TechnologyITMO UniversitySt. PetersburgRussia

Personalised recommendations