Applied Physics B

, 123:14 | Cite as

Time-resolved laser-induced incandescence characterization of metal nanoparticles

  • T. A. Sipkens
  • N. R. Singh
  • K. J. Daun


This paper presents a comparative analysis of time-resolved laser-induced incandescence measurements of iron, silver, and molybdenum aerosols. Both the variation of peak temperature with fluence and the temperature decay curves strongly depend on the melting point and latent heat of vaporization of the nanoparticles. Recovered nanoparticle sizes are consistent with ex situ analysis, while thermal accommodation coefficients follow expected trends with gas molecular mass and structure. Nevertheless, there remain several unanswered questions and unexplained behaviors: the radiative properties of laser-energized iron nanoparticles do not match those of bulk molten iron; the absorption cross sections of molten iron and silver at the excitation laser wavelength exceed theoretical predictions; and there is an unexplained feature in the temperature decay of laser-energized molybdenum nanoparticles immediately following the laser pulse.


Silver Nanoparticles Iron Nanoparticles Heat Transfer Model Molten Iron Temperature Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the National Science and Engineering Research Council of Canada (NSERC DG 35627). The authors would also like to acknowledge Prof. Zhongchao Tan for his assistance with the pneumatic atomizer. The authors would also like to acknowledge support from the Canadian Centre for Electron Microscopy (CCEM) as well as Navid Bizmark, Robert Liang, and Andrew Kacheff for their assistance with ex situ characterization.


  1. 1.
    D.L. Feldheim Jr., C.A. Foss, Metal Nanoparticles: Synthesis, Characterization, and Applications (Macrel Dekker Inc., Basel, 2002)Google Scholar
  2. 2.
    K.-S. Lee, M.A. El-Sayed, J. Phys. Chem. B 110, 39 (2006)Google Scholar
  3. 3.
    M. Rai, A. Yadav, A. Gade, Biotechnol. Adv. 27, 1 (2009)CrossRefGoogle Scholar
  4. 4.
    R. Narayanan, M.A. El-Sayed, J. Phys. Chem. B 109, 26 (2005)Google Scholar
  5. 5.
    W.-X. Zhang, J. Nanopart. Res. 5, 3–4 (2003)CrossRefGoogle Scholar
  6. 6.
    M.T. Swihart, Curr. Opin. Colloid Interface Sci. 8, 1 (2003)CrossRefGoogle Scholar
  7. 7.
    A.D. Maynard, D.Y.H. Pui, Nanoparticles and Occupational Health (Springer, Dordreicht, 2007)Google Scholar
  8. 8.
    Y. Ju-Nam, J.R. Lead, Sci. Total Environ. 400, 1 (2008)CrossRefGoogle Scholar
  9. 9.
    J.D. McNeilly, M.R. Heal, I.J. Beverland, A. Howe, M.D. Gibson, L.R. Hibbs, W. MacNee, K. Donaldson, YTAAP 196, 1 (2004)Google Scholar
  10. 10.
    H.A. Michelsen, C. Schulz, G.J. Smallwood, S. Will, Prog. Energy Combust. Sci. 51, 2–48 (2015)CrossRefGoogle Scholar
  11. 11.
    R.L. Vander Wal, T.M. Ticich, J.R. West, Appl. Opt. 38, 27 (1999)Google Scholar
  12. 12.
    A. Eremin, E. Gurentsov, C. Schulz, J. Phys. D Appl. Phys. 41, 5 (2008)CrossRefGoogle Scholar
  13. 13.
    A. Eremin, E. Gurentsov, E. Popova, K. Priemchenko, Appl. Phys. B 104, 2 (2011)CrossRefGoogle Scholar
  14. 14.
    B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1 (2005)CrossRefGoogle Scholar
  15. 15.
    A. Eremin, E. Gurentsov, E. Mikheyeva, K. Priemchenko, Appl. Phys. B 112, 3 (2013)CrossRefGoogle Scholar
  16. 16.
    T.A. Sipkens, N.R. Singh, K.J. Daun, N. Bizmark, M. Ioannidis, Appl. Phys. B 119, 4 (2015)CrossRefGoogle Scholar
  17. 17.
    L. Landström, K. Elihn, M. Boman, C.G. Granqvist, P. Heszler, Appl. Phys. A 81, 4 (2005)Google Scholar
  18. 18.
    J. Knipping, H. Wiggers, B.F. Kock, T. Hülser, B. Rellinghaus, P. Roth, Nanotechnology 15, 11 (2004)CrossRefGoogle Scholar
  19. 19.
    Y. Murakami, T. Sugatani, Y. Nosaka, J. Phys. Chem. A 109, 40 (2005)Google Scholar
  20. 20.
    T. Sipkens, K.J. Daun, G. Joshi, Y. Murakami, J. Heat Trans. 135(5), 052401 (2013)CrossRefGoogle Scholar
  21. 21.
    A.V. Eremin, E.V. Grentsov, Appl. Phys. A 119, 2 (2015)CrossRefGoogle Scholar
  22. 22.
    J. Reimann, H. Oltmann, S. Will, E. Bassano, L. Carotenuto, S. Lösch, B. H. Günther, Proceeding of the World Congress on Particle Technology, vol 6, Nuremberg, Germany (2010)Google Scholar
  23. 23.
    A.V. Fillipov, M.W. Markus, P. Roth, J. Aerosol Sci. 30, 1 (1999)CrossRefGoogle Scholar
  24. 24.
    N.R. Singh, T.A. Sipkens, K.J. Daun, First Thermal and Fluids Engineering Summer Conference, ASTFE, New York, NY (2015)Google Scholar
  25. 25.
    L. Landström, P. Heszler, J. Phys. Chem. B 108, 20 (2004)CrossRefGoogle Scholar
  26. 26.
    T.A. Sipkens, R. Mansmann, K.J. Daun, N. Petermann, J.T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schulz, Appl. Phys. B 116, 3 (2014)CrossRefGoogle Scholar
  27. 27.
    K.M. Shvarev, B.A. Baun, P.V. Gel’d, Sov. Phys. Solid State 16, 11 (1975)Google Scholar
  28. 28.
    K.J. Daun, T.A. Sipkens, J.T. Titantah, M. Karttunen, Appl. Phys. B 112, 3 (2013)Google Scholar
  29. 29.
    M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley-VCH, Weinheim, 2011)CrossRefGoogle Scholar
  30. 30.
    T.E. Faber, Introduction to the Theory of Liquid Metals (Cambridge University Press, Cambridge, 1972)Google Scholar
  31. 31.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)Google Scholar
  32. 32.
    T.C. Bond, R.W. Bergstrom, Aerosol Sci. Technol. 40, 1 (2006)CrossRefGoogle Scholar
  33. 33.
    F. Migliorini, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 104, 2 (2011)CrossRefGoogle Scholar
  34. 34.
    H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, Tribalet Appl. Phys. B. 87, 3 (2007)Google Scholar
  35. 35.
    J.C. Miller, Philos. Mag. 20, 168 (1969)CrossRefGoogle Scholar
  36. 36.
    S. Krishnan, G.P. Hansen, R.H. Hauge, J.L. Margrave, High Temp. Sci. 29, 1 (1990)Google Scholar
  37. 37.
    H. Kobatake, H. Khosroabadi, H. Fukuyama, Met. Trans. A 43, 7 (2012)Google Scholar
  38. 38.
    K.J. Daun, Met. Trans. A. 47, 7 (2016)Google Scholar
  39. 39.
    S. Krishnan, K.J. Yugawa, P.C. Nordine, Phys. Rev. B 55, 13 (1997)CrossRefGoogle Scholar
  40. 40.
    K.M. Shvarev, V.S. Gushchin, B.A. Baum, High Temp. 16(1–3), 441–446 (1978)Google Scholar
  41. 41.
    P.F. Paradis, T. Ishikawa, Y. Nosaka, Int. J. Thermophys. 23, 2 (2002)Google Scholar
  42. 42.
    M.F. Modest, Radiative Heat Transfer, 3rd edn. (Academic Press, New York, 2003)zbMATHGoogle Scholar
  43. 43.
    B.T. Barnes, JOSA 56, 11 (1966)Google Scholar
  44. 44.
    D.W. Juenker, L.J. LeBlanc, C.R. Martin, J. Opt. Soc. Am. 58, 2 (1968)CrossRefGoogle Scholar
  45. 45.
    E.D. Palik, Handbook of Optical Constants of Solids (Elsevier, London, 2012)Google Scholar
  46. 46.
    R.S. Hixson, M.A. Winkler, M.L. Hodgdon, Phys. Rev. B 42, 10 (1990)CrossRefGoogle Scholar
  47. 47.
    A.V. Grosse, A.D. Kirshenbaum, J. Inorg. Nucl. Chem. 24, 6 (1962)Google Scholar
  48. 48.
    P.D. Desai, J. Phys. Chem. Ref. Data 15, 3 (1986)CrossRefGoogle Scholar
  49. 49.
    C. Cagran, W. Wilthan, G. Pottlacher, Thermochim. Acta 445, 2 (2006)CrossRefGoogle Scholar
  50. 50.
    J.A. Dean, Lange’s Handbook of Chemistry, 15th edn. (McGraw-Hill, New York., 1999)Google Scholar
  51. 51.
    F. Mafune, J.-Y. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 107, 18 (2003)Google Scholar
  52. 52.
    W.M. Haynes (ed.), CRC Handbook of Chemistry and Physics, 96th Edition, 2015–2016 (CRC Press, Cleveland, 2015)Google Scholar
  53. 53.
    P.D. Desai, J. Phys. Chem. Ref. Data 16, 1 (1987)CrossRefGoogle Scholar
  54. 54.
    D.A. Young, B.J. Alder, Phys. Rev. A 3, 1 (1971)CrossRefGoogle Scholar
  55. 55.
    B.J. Keene, Int. Mater. Rev. 33, 1 (1988)CrossRefGoogle Scholar
  56. 56.
    R. Novakovic, E. Ricci, D. Giuranno, A. Passerone, Surf. Sci. 576, 1 (2005)CrossRefGoogle Scholar
  57. 57.
    H.M. Lu, Q. Jiang, J. Phys. Chem. B 109, 32 (2005)Google Scholar
  58. 58.
    S. Velasco, F.L. Román, J.A. White, A. Mulero, FFE 244, 1 (2006)Google Scholar
  59. 59.
    TSI, Model 3076 Constant Output Atomizer Instruction Manual (2005)Google Scholar
  60. 60.
    Y. Liu, S.A. Majetich, R.D. Tilton, D.S. Scholl, G.V. Lowry, Environ. Sci. Technol. 39, 5 (2005)Google Scholar
  61. 61.
    F. He, D. Zhao, Environ. Sci. Technol. 41, 17 (2007)CrossRefGoogle Scholar
  62. 62.
    P.C. Lee, D. Meisel, J. Phys. Chem. 86, 17 (1982)Google Scholar
  63. 63.
    S.K. Friedlander, C.S. Wang, J. Colloid Interface Sci. 22, 2 (1966)CrossRefGoogle Scholar
  64. 64.
    W.K. Brown, K.H. Wohletz, J. Appl. Phys. 78, 4 (1995)Google Scholar
  65. 65.
    A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 22 (1998)CrossRefGoogle Scholar
  66. 66.
    M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry, Appl. Opt. 24, 24 (1985)Google Scholar
  67. 67.
    T. Phenrat, H.J. Kim, F. Fagerlund, T. Illangasekare, R.D. Tilton, G.V. Lowry, Environ. Sci. Technol. 43, 15 (2009)Google Scholar
  68. 68.
    R. Thompson, J. R. Stat. Soc. 47, 1 (1985)Google Scholar
  69. 69.
    S.W. Churchill, R. Usagi, AIChE J. 18, 6 (1972)CrossRefGoogle Scholar
  70. 70.
    S. Maffi, S. De Iuliis, F. Cignoli, G. Zizak, Appl. Phys. B 104, 2 (2011)CrossRefGoogle Scholar
  71. 71.
    D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Appl. Phys. B 96, 4 (2009)CrossRefGoogle Scholar
  72. 72.
    K.J. Daun, G.J. Smallwood, F. Liu, J. Heat Trans. 130(12), 121201 (2008)CrossRefGoogle Scholar
  73. 73.
    G. Schierning, R. Theissmann, H. Wiggers, D. Sudfeld, A. Ebbers, D. Franke, V.T. Witusiewicz, M. Apel, J. Appl. Phys. 103, 8 (2008)CrossRefGoogle Scholar
  74. 74.
    P.R. Couchman, W.A. Jesser, Nature 269, 481–483 (1977)ADSCrossRefGoogle Scholar
  75. 75.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 1 (2004)CrossRefGoogle Scholar
  76. 76.
    J.P. Perdew, Phys. Rev. B 37, 11 (1988)Google Scholar
  77. 77.
    P.J. Hadwin, T.A. Sipkens, K.A. Thomson, F. Liu, K.J. Daun, Appl. Phys. B 122, 1 (2016)ADSCrossRefGoogle Scholar
  78. 78.
    B.M. Crosland, M.R. Johnson, K.A. Thomson, Appl. Phys. B 102, 1 (2011)CrossRefGoogle Scholar
  79. 79.
    K.J. Daun, Int. J. Heat Mass Transf. 52, 21 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations