Applied Physics B

, 123:11 | Cite as

Coherence in laser-driven electrons at the surface and in the volume of solid matter

  • Peter Hommelhoff
Part of the following topical collections:
  1. “Enlightening the World with the Laser” - Honoring T. W. Hänsch


The femtosecond frequency comb allows controlling the carrier field of ultrashort laser pulses. We show two examples on how this control over fields oscillating with a few hundred terahertz can be utilized to control electrons at the surface and in the volume of solids. After a brief discussion of strong-field physics at metal needle tips, we show how ultrafast two-color laser pulses allow quantum path interference to dramatically alter the emission current from sharp tips, with an interference visibility of 94%. With carrier-envelope phase-controlled laser pulses, we show furthermore how light-field sensitive currents can be excited in monolayer graphene via an interplay of interband and intraband electron dynamics including multiple Landau–Zener transitions.


Ultrashort Laser Pulse Bichromatic Field Femtosecond Frequency Comb Zener Transition Fundamental Laser Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author acknowledges the many contributions of and is grateful to all past and current members of his group, in particular the long-time members Drs. Johannes Hoffrogge, Markus Schenk, Michael Krüger, John Breuer, Jakob Hammer, Sebastian Thomas, Michael Förster, Takuya Higuchi, Joshua McNeur and Martin Kozák. Funding from ERC (NearFieldAtto), SFB 953, SPP 1840 QUTIF and the Gordon and Betty Moore Foundation is gratefully acknowledged.


  1. 1.
    T. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 233 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    A. McPherson, G. Gibson, H. Jara, U. Johann, T.S. Luk, I.A. McIntyre, K. Boyer, C.K. Rhodes, J. Opt. Soc. Am. B 4, 595 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    M. Ferray, A. L’Huillier, X.F. Li, L.A. Lompre, G. Mainfray, C. Manus, J. Phys. B At. Mol. Opt. Phys. 21, L31 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)CrossRefGoogle Scholar
  5. 5.
    T. Schultz, M. Vrakking (eds.), Attosecond and XUV Spectroscopy: Ultrafast Dynamics and Spectroscopy (Wiley-VCH, Weinheim, 2014)Google Scholar
  6. 6.
    T.W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    T. Nakajima, P. Lambropoulos, Phys. Rev. A 50, 595 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    A. Apolonski, P. Dombi, G.G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdörfer, T.W. Hänsch, F. Krausz, Phys. Rev. Lett. 92, 073902 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    M.A. Porras, Phys. Rev. E 65, 026606 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    D. Hoff, M. Krüger, L. Maisenbacher, A. M. Sayler, G. G. Paulus, P. Hommelhoff, to be published (2017)Google Scholar
  11. 11.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2012)CrossRefGoogle Scholar
  12. 12.
    S. Thomas, M. Krüger, M. Förster, M. Schenk, P. Hommelhoff, Nano Lett. 13, 4790 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    M. Krüger, S. Thomas, M. Förster, P. Hommelhoff, J. Phys. B At. Mol. Opt. Phys. 47, 124022 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    S. Thomas, G. Wachter, C. Lemell, J. Burgdörfer, P. Hommelhoff, New J. Phys. 17, 063010 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    M. Aeschlimann, C.A. Schmuttenmaer, H.E. Elsayed-Ali, R.J.D. Miller, J. Cao, Y. Gao, D.A. Mantell, J. Chem. Phys. 102, 8606 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    M. Schenk, M. Krüger, P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    N.B. Delone, V.P. Krainov, Multiphoton Processes in Atoms (Springer, Berlin, 1994)CrossRefGoogle Scholar
  18. 18.
    R. Bormann, M. Gulde, A. Weismann, S.V. Yalunin, C. Ropers, Phys. Rev. Lett. 105, 147601 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    M. Bionta, B. Chalopin, J. Champeaux, S. Faure, A. Masseboeuf, P. Moretto-Capelle, B. Chatel, J. Mod. Opt. 61, 833 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    M. Krüger, M. Schenk, P. Hommelhoff, Nature 475, 78 (2011)CrossRefGoogle Scholar
  21. 21.
    G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, Phys. Rev. B 86, 035402 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    M. Krüger, M. Schenk, P. Hommelhoff, G. Wachter, C. Lemell, J. Burgdörfer, New J. Phys. 14, 085019 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    G. Herink, D.R. Solli, M. Gulde, C. Ropers, Nature 483, 190 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    B. Piglosiewicz, S. Schmidt, D.J. Park, J. Vogelsang, P. Gross, C. Manzoni, P. Farinello, G. Cerullo, C. Lienau, Nat. Photonics 8, 37 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    P. Dombi, A.Y. Elezzabi, in Attosecond Nanophysics, ed. by P. Hommelhoff, M. Kling (Wiley-VCH, Weinheim, 2015)Google Scholar
  26. 26.
    C. Lienau, M. Raschke, C. Ropers, in Attosecond Nanophysics, ed. by P. Hommelhoff, M. Kling (Wiley-VCH, Weinheim, 2015)Google Scholar
  27. 27.
    F. Süßmann, M.F. Kling, P. Hommelhoff, in Attosecond Nanophysics, ed. by P. Hommelhoff, M. Kling (Wiley-VCH, Weinheim, 2015)Google Scholar
  28. 28.
    M. Krüger, M. Schenk, M. Förster, P. Hommelhoff, J. Phys. B 45, 074006 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    T. Higuchi, L. Maisenbacher, A. Liehl, P. Dombi, P. Hommelhoff, Appl. Phys. Lett. 106, 051109 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huiller, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    S.V. Yalunin, M. Gulde, C. Ropers, Phys. Rev. B 84, 195426 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    S.V. Yalunin, G. Herink, D.R. Solli, M. Krüger, P. Hommelhoff, M. Diehn, A. Munk, C. Ropers, Ann. Phys. 525, L12 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    H.G. Muller, P.H. Bucksbaum, D.W. Schumacher, A. Zavriyev, J. Phys. B At. Mol. Opt. Phys. 23, 2761 (1990)ADSCrossRefGoogle Scholar
  35. 35.
    D.W. Schumacher, F. Weihe, H.G. Muller, P.H. Bucksbaum, Phys. Rev. Lett. 73, 1344 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    F. Ehlotzky, Phys. Rep. 345, 175 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    X. Xie, S. Roither, D. Kartashov, E. Persson, D.G. Arbó, L. Zhang, S. Gräfe, M.S. Schöffler, J. Burgdörfer, A. Baltuška, M. Kitzler, Phys. Rev. Lett. 108, 193004 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    S. Skruszewicz, J. Tiggesbäumker, K.-H. Meiwes-Broer, M. Arbeiter, T. Fennel, D. Bauer, Phys. Rev. Lett. 115, 043001 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, P. Hommelhoff, Phys. Rev. Lett. 117, 217601 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    C. Homann, M. Bradler, M. Förster, P. Hommelhoff, E. Riedle, Opt. Lett. 37, 1673 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L.F. DiMauro, D.A. Reis, Nat. Phys. 7, 138 (2010)CrossRefGoogle Scholar
  42. 42.
    M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S.W. Koch, M. Kira, R. Huber, Nature 523, 527 (2015)CrossRefGoogle Scholar
  43. 43.
    M. Schultze, E.M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V.S. Yakovlev, M.I. Stockman, F. Krausz, Nature 493, 75 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    M. Schultze, K. Ramasesha, C. Pemmaraju, S. Sato, D. Whitmore, A. Gandman, J.S. Prell, L.J. Borja, D. Prendergast, K. Yabana, D.M. Neumark, S.R. Leone, Science 346, 1348 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    T. Higuchi, C. Heide, K. Ullmann, H. B. Weber, P. Hommelhoff, arXiv:1607.04198 (2016)
  47. 47.
    H.K. Kelardeh, V. Apalkov, M.I. Stockman, Phys. Rev. B 93, 155434 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    P. Ackermann, A. Scharf, T. Halfmann, Phys. Rev. A 89, 063804 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y.R. Sortais, S.M. Foreman, M.A. Kasevich, Ultramicroscopy 109, 423 (2009)CrossRefGoogle Scholar
  50. 50.
    T.W. Hänsch, Opt. Photonics News, 14 (2005)Google Scholar
  51. 51.
    Superlaser123, Arthur L. Schawlow pops a balloon, Accessed 11 Aug 2016
  52. 52.
    P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M.A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    P. Hommelhoff, C. Kealhofer, M. A. Kasevich, in Proceedings of the 2006 IEEE International Frequency Control Symposium and Expositions, Vols 1 and 2, pp. 470–474 (2006)Google Scholar
  54. 54.
    J. Hoffrogge, R. Fröhlich, M.A. Kasevich, P. Hommelhoff, Phys. Rev. Lett. 106, 193001 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    J. Breuer, P. Hommelhoff, Phys. Rev. Lett. 111, 134803 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    A. Ozawa, W. Schneider, T.W. Hänsch, T. Udem, P. Hommelhoff, New J. Phys. 11, 083029 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    A. Ozawa, W. Schneider, F. Najafi, T.W. Hänsch, T. Udem, P. Hommelhoff, Laser Phys. 20, 967 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    A. Ozawa, T. Udem, U.D. Zeitner, T.W. Hänsch, P. Hommelhoff, Phys. Rev. A 82, 033815 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S.L. Stebbings, M.F. Kling, P. Hommelhoff, H.-D. Hoffmann, R. Poprawe, F. Krausz, T.W. Hänsch, T. Udem, Opt. Lett. 36, 3428 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    S. Thomas, R. Holzwarth, P. Hommelhoff, Opt. Exp. 20, 13663 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    A. Vernaleken, B. Schmidt, M. Wolferstetter, T.W. Hänsch, R. Holzwarth, P. Hommelhoff, Opt. Exp. 20, 18387 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    A. Vernaleken, B. Schmidt, T.W. Hänsch, R. Holzwarth, P. Hommelhoff, Appl. Phys. B 117, 33 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations