Applied Physics B

, 123:15 | Cite as

Frequency-comb referenced collinear laser spectroscopy of Be+ for nuclear structure investigations and many-body QED tests

  • A. Krieger
  • W. Nörtershäuser
  • Ch. Geppert
  • K. Blaum
  • M. L. Bissell
  • N. Frömmgen
  • M. Hammen
  • K. Kreim
  • M. Kowalska
  • J. Krämer
  • R. Neugart
  • G. Neyens
  • R. Sánchez
  • D. Tiedemann
  • D. T. Yordanov
  • M. Zakova
Article
Part of the following topical collections:
  1. “Enlightening the World with the Laser” - Honoring T. W. Hänsch

Abstract

Transition frequencies of the \(2s\,^2{\text{S}}_{1/2} \rightarrow 2p\,^2 {\text{P}}_{1/2,\,3/2}\) transitions in Be\(^+\) were measured in stable and short-lived isotopes at ISOLDE (CERN) using collinear laser spectroscopy and frequency-comb-referenced dye lasers. Quasi-simultaneous measurements in copropagating and counterpropagating geometry were performed to become independent from acceleration voltage determinations for Doppler-shift corrections of the fast ion beam. Isotope shifts and fine-structure splittings were obtained from the transition frequencies measured with a frequency comb with accuracies better than 1 MHz and led to a precise determination of the nuclear charge radii of \(^{7,10-12}\)Be relative to the stable isotope 9Be. Moreover, an accurate determination of the 2p fine-structure splitting allowed a test of high-precision bound-state QED calculations in the three-electron system. Here, we describe the laser spectroscopic method in detail, including several tests that were carried out to determine or estimate systematic uncertainties. Final values from two experimental runs at ISOLDE are presented, and the results are discussed.

References

  1. 1.
    W. Nörtershäuser et al., Phys. Rev. Lett. 102, 062503 (2009)CrossRefGoogle Scholar
  2. 2.
    A. Krieger et al., Phys. Rev. Lett. 108, 142501 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    W. Nörtershäuser et al., Phys. Rev. Lett. 115, 033002 (2015)CrossRefGoogle Scholar
  4. 4.
    R. Neugart, Hyp. Int. 24, 159 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    E.W. Otten, Nuclear radii and moments of unstable isotopes, in Treatise on Heavy Ion Science, vol. 8, ed. by D.A. Bromley (Plenum Publishing Corp. (Springer), New York, 1989), p. 517CrossRefGoogle Scholar
  6. 6.
    J. Billowes, P. Campbell, J. Phys. G 21, 707 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    R. Neugart, Eur. Phys. J. A 15, 35 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    R. Neugart, G. Neyens, Lect. Notes Phys. 700, 135 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    B. Cheal, K. Flanagan, J. Phys. G 37, 113101 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. T152, 014017 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    P. Campbell, I.D. Moore, M.R. Pearson, Prog. Part. Nucl. Phys. 86, 127 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    T.P. Dinneen, N. Berrah-Mansour, H.G. Berry, L. Young, R.C. Pardo, Phys. Rev. Lett. 66, 2859 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    J.K. Thompson, D.J.H. Howie, E.G. Myers, Phys. Rev. A 57, 180 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    E.G. Myers, H.S. Margolis, J.K. Thompson, M.A. Farmer, J.D. Silver, M.R. Tarbutt, Phys. Rev. Lett. 82, 4200 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    W. Geithner et al., Phys. Rev. Lett. 83, 3792 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    K. Marinova et al., Phys. Rev. C 84, 034313 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Z.-C. Yan, G.W.F. Drake, Phys. Rev. A 61, 022504 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Z.-C. Yan, G.W.F. Drake, Phys. Rev. Lett. 91, 113004 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    M. Puchalski, A.M. Moro, K. Pachucki, Phys. Rev. Lett. 97, 133001 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Z.-C. Yan, W. Nörtershäuser, G.W.F. Drake, Phys. Rev. Lett. 100, 243002 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Z.-C. Yan, W. Nörtershäuser, G.W.F. Drake, Phys. Rev. Lett. 102, 249903(E) (2009)ADSCrossRefGoogle Scholar
  22. 22.
    W. Nörtershäuser et al., Phys. Rev. A 83, 012516 (2011)CrossRefGoogle Scholar
  23. 23.
    K. Pachucki, J. Komasa, Phys. Rev. Lett. 92, 213001 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    M. Puchalski, K. Pachucki, J. Komasa, Phys. Rev. A 89, 012506 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    M. Puchalski, J. Komasa, K. Pachucki, Phys. Rev. A 92, 062501 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    I. Tanihata et al., Phys. Rev. Lett. 55, 2676–2679 (1985)ADSCrossRefGoogle Scholar
  27. 27.
    L.-B. Wang et al., Phys. Rev. Lett. 93, 142501 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    P. Müller et al., Phys. Rev. Lett. 99, 252501 (2007)CrossRefGoogle Scholar
  29. 29.
    G. Ewald et al., Phys. Rev. Lett. 93, 113002 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    R. Sánchez et al., Phys. Rev. Lett. 96, 033002 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    T. Nakamura et al., Phys. Rev. A 74, 052503 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    A. Takamine et al., Eur. Phys. J. A 42, 369 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    K. Pachucki, V.A. Yerokhin, Phys. Rev. Lett. 104, 070403 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    M. Puchalski, K. Pachucki, Phys. Rev. Lett. 113, 073004 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    G.A. Noble, B.E. Schultz, H. Ming, W.A. van Wijngaarden, Phys. Rev. A 74, 012502 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    C.J. Sansonetti, C.E. Simien, J.D. Gillaspy, J.N. Tan, S.M. Brewer, R.C. Brown, S. Wu, J.V. Porto, Phys. Rev. Lett. 107, 023001 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    R.C. Brown, S.J. Wu, J.V. Porto, C.J. Sansonetti, C.E. Simien, S.M. Brewer, J.N. Tan, J.D. Gillaspy, Phys. Rev. A 87, 032504 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    M. Puchalski, K. Pachucki, Phys. Rev. A 78, 052511 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Z.T. Lu, P. Mueller, G.W.F. Drake, W. Nörtershäuser, S.C. Pieper, Z.C. Yan, Rev. Mod. Phys. 85, 1383 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    G.W.F. Drake, Windsor University, Priv. Commun. (2010)Google Scholar
  41. 41.
    M. Puchalski, K. Pachucki, Hyp. Int. 196, 35 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    K. Pachucki, Institute of Theoretical Physics, University of Warsaw, Priv. Commun. (2011)Google Scholar
  43. 43.
    J.A. Jansen, R.T. Peerdeman, C. de Vries, Nucl. Phys. A 188, 337 (1972)ADSCrossRefGoogle Scholar
  44. 44.
    A. Derevianko, S.G. Porsev, K. Beloy, Phys. Rev. A 78, 010503(R) (2008)ADSCrossRefGoogle Scholar
  45. 45.
    M. Douglas, N.M. Kroll, Ann. Phys. (N. Y.) 82, 89 (1974)ADSCrossRefGoogle Scholar
  46. 46.
    M. Puchalski, K. Pachucki, Phys. Rev. A 92, 012513 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Z.C. Yan et al., Phys. Rev. A 66(042504), 1–8 (2002)Google Scholar
  48. 48.
    U. Koester et al., Enam 98 Exot. Nucl. Atomic Masses 455, 989 (1998)CrossRefGoogle Scholar
  49. 49.
    V.N. Fedosseev et al., Nucl. Instrum. Methods B 266, 4378 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    G. Audi et al., Nucl. Phys. A 624, 1–124 (1997)ADSCrossRefGoogle Scholar
  51. 51.
    D.C. Fiander et al., in CERN/PS92-38, Proceedings of the of 20th Power Modulator Symposium (1992)Google Scholar
  52. 52.
    R. Neugart, Nucl. Instrum. Methods 186, 165–175 (1981)ADSCrossRefGoogle Scholar
  53. 53.
    F. Buchinger et al., Nucl. Instrum. Methods B 202, 159 (1982)CrossRefGoogle Scholar
  54. 54.
    A.C. Müller et al., Nucl. Phys. A 403, 234 (1983)CrossRefGoogle Scholar
  55. 55.
    R. Neugart et al., Nucl. Instrum. Methods B 17, 354 (1986)ADSCrossRefGoogle Scholar
  56. 56.
    W. Geithner et al., Phys. Rev. C 71, 064319 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    G. Neyens et al., Phys. Rev. Lett. 94, 022501 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    M. Kowalska et al., Eur. Phys. J. A 25(s01), 193 (2005)CrossRefGoogle Scholar
  59. 59.
    T. Thümmler et al., New J. Phys. 11, 103007 (2009)CrossRefGoogle Scholar
  60. 60.
    A. Krieger et al., Nucl. Instrum. Methods A 632, 23 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    O. Poulsen, E. Riis, Metrologia 25, 147 (1988)ADSCrossRefGoogle Scholar
  62. 62.
    E. Riis, A.G. Sinclair, O. Poulsen, G.W.F. Drake, W.R.C. Rowley, A.P. Levick, Phys. Rev. A 49, 207 (1994)ADSCrossRefGoogle Scholar
  63. 63.
    Program IodineSpec from Toptica Photonics (2004)Google Scholar
  64. 64.
    N.I. Ashwood, Phys. Lett. B 580, 129 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    M. Zakova et al., J. Phys. G 37, 055107 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    J.J. Bollinger, J.S. Wells, D.J. Wineland, W.M. Itano, Phys. Rev. A 31, 2711 (1985)ADSCrossRefGoogle Scholar
  67. 67.
    M. Puchalski, K. Pachucki, Phys. Rev. A 79, 032510 (2009)ADSCrossRefGoogle Scholar
  68. 68.
  69. 69.
    K. Okada et al., Phys. Rev. Lett. 101, 212502 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    D.J. Wineland, J.J. Bollinger, W.M. Itano, Phys. Rev. Lett. 50, 628 (1983)ADSCrossRefGoogle Scholar
  71. 71.
    A. Takamine et al., Phys. Rev. Lett. 112, 162502 (2014)ADSCrossRefGoogle Scholar
  72. 72.
    I. Sick, Universität Basel, Priv. Commun. (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. Krieger
    • 1
    • 2
    • 3
  • W. Nörtershäuser
    • 1
    • 2
  • Ch. Geppert
    • 1
    • 2
  • K. Blaum
    • 4
  • M. L. Bissell
    • 5
  • N. Frömmgen
    • 2
  • M. Hammen
    • 2
    • 3
  • K. Kreim
    • 4
  • M. Kowalska
    • 6
  • J. Krämer
    • 1
    • 2
  • R. Neugart
    • 2
    • 4
  • G. Neyens
    • 5
  • R. Sánchez
    • 2
    • 7
  • D. Tiedemann
    • 2
  • D. T. Yordanov
    • 4
    • 6
  • M. Zakova
    • 2
  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institut für KernchemieJohannes Gutenberg-Universität MainzMainzGermany
  3. 3.Helmholtz-Institut MainzJohannes Gutenberg-Universität MainzMainzGermany
  4. 4.Max-Planck-Institut für KernphysikHeidelbergGermany
  5. 5.Instituut Voor Kern- En StralingsfysicaKU LeuvenLeuvenBelgium
  6. 6.Physics DepartmentCERNGeneva 23Switzerland
  7. 7.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany

Personalised recommendations