Applied Physics B

, 122:292 | Cite as

Sensitivity and resolution in frequency comb spectroscopy of buffer gas cooled polyatomic molecules

  • P. Bryan Changala
  • Ben Spaun
  • David Patterson
  • John M. Doyle
  • Jun Ye
Part of the following topical collections:
  1. “Enlightening the World with the Laser” - Honoring T. W. Hänsch


We discuss the use of cavity-enhanced direct frequency comb spectroscopy in the mid-infrared region with buffer gas cooling of polyatomic molecules for high-precision rovibrational absorption spectroscopy. A frequency comb coupled to an optical enhancement cavity allows us to collect high-resolution, broad-bandwidth infrared spectra of translationally and rotationally cold (10–20 K) gas-phase molecules with high absorption sensitivity and fast acquisition times. The design and performance of the combined apparatus are discussed in detail. Recorded rovibrational spectra in the CH stretching region of several organic molecules, including vinyl bromide (CH\(_2\)CHBr), adamantane (C\(_{10}\)H\(_{16}\)), and diamantane (C\(_{14}\)H\(_{20}\)) demonstrate the resolution and sensitivity of this technique, as well as the intrinsic challenges faced in extending the frontier of high-resolution spectroscopy to large complex molecules.


Frequency Comb Periodically Pole Lithium Niobate Fourier Transform Spectrometer Cavity Transmission Cold Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We dedicate this paper to Ted Hänsch, who has pioneered the field of laser spectroscopy in general and optical frequency combs in particular. This research was funded by DARPA SCOUT, AFOSR, NIST, and NSF-JILA PFC. P.B.C. is supported by the NSF GRFP (Award no. DGE1144083). B.S. is supported through an NRC Postdoctoral Fellowship. D.P. and J.M.D. acknowledge additional support from the NSF. We would like to thank Matthew Radzihovsky for experimental assistance at JILA.


  1. 1.
    T. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233–237 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    S.T. Cundiff, J. Ye, Colloquium : femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    M.C. Stowe, M.J. Thorpe, A. Pe’er, J. Ye, J.E. Stalnaker, V. Gerginov, S.A. Diddams, Direct frequency comb spectroscopy. Adv. At. Mol. Opt. Phys. 55, 1–60 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M. Thorpe, J. Ye, Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B 91, 397–414 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    F. Adler, M.J. Thorpe, K.C. Cossel, J. Ye, Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. 3, 175–205 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Foltynowicz, P. Masłowski, A.J. Fleisher, B.J. Bjork, J. Ye, Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Appl. Phys. B 110, 163–175 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    A.J. Fleisher, B.J. Bjork, T.Q. Bui, K.C. Cossel, M. Okumura, J. Ye, Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals. J. Phys. Chem. Lett. 5, 2241–2246 (2014)CrossRefGoogle Scholar
  8. 8.
    B. Spaun, P.B. Changala, D. Patterson, B.J. Bjork, O.H. Heckl, J.M. Doyle, J. Ye, Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature 533, 517–520 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    S. Davis, D.T. Anderson, G. Duxbury, D.J. Nesbitt, Jet-cooled molecular radicals in slit supersonic discharges: Sub-Doppler infrared studies of methyl radical. J. Chem. Phys. 107, 5661 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    B.E. Brumfield, J.T. Stewart, B.J. McCall, Extending the limits of rotationally resolved absorption spectroscopy: pyrene. J. Phys. Chem. Lett. 3, 1985–1988 (2012)CrossRefGoogle Scholar
  11. 11.
    J.K. Messer, F.C. De Lucia, Measurement of pressure-broadening parameters for the CO-He system at 4 K. Phys. Rev. Lett. 53, 2555–2558 (1984)ADSCrossRefGoogle Scholar
  12. 12.
    D. Patterson, E. Tsikata, J.M. Doyle, Cooling and collisions of large gas phase molecules. Phys. Chem. Chem. Phys. 12, 9736–9741 (2010)CrossRefGoogle Scholar
  13. 13.
    D. Patterson, J.M. Doyle, Cooling molecules in a cell for FTMW spectroscopy. Mol. Phys. 110, 1757–1766 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    J. Piskorski, D. Patterson, S. Eibenberger, J.M. Doyle, Cooling, spectroscopy and non-sticking of trans-stilbene and Nile Red. Chemphyschem 15, 3800–4 (2014)CrossRefGoogle Scholar
  15. 15.
    D.J. Nesbitt, R.W. Field, Vibrational energy flow in highly excited molecules: role of intramolecular vibrational redistribution. J. Phys. Chem. 100, 12735–12756 (1996)CrossRefGoogle Scholar
  16. 16.
    F. Adler, K.C. Cossel, M.J. Thorpe, I. Hartl, M.E. Fermann, J. Ye, Phase-stabilized, 1.5 W frequency comb at 2.8\(-\)4.8 \(\mu\)m. Opt. Lett. 34, 1330 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    G.D. Cole, W. Zhang, B.J. Bjork, D. Follman, P. Heu, C. Deutsch, L. Sonderhouse, J. Robinson, C. Franz, A. Alexandrovski, M. Notcutt, O.H. Heckl, J. Ye, M. Aspelmeyer, High-performance near- and mid-infrared crystalline coatings. Optica 3, 647 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Mandon, G. Guelachvili, N. Picqué, Fourier transform spectroscopy with a laser frequency comb. Nat. Photon. 3, 99–102 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    F. Adler, P. Masłowski, A. Foltynowicz, K.C. Cossel, T.C. Briles, I. Hartl, J. Ye, Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express 18, 21861–72 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    L. Nugent-Glandorf, T. Neely, F. Adler, A.J. Fleisher, K.C. Cossel, B. Bjork, T. Dinneen, J. Ye, S.A. Diddams, Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Opt. Lett. 37, 3285 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    P. Maslowski, K.F. Lee, A.C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A.A. Mills, C. Mohr, J. Jiang, M.E. Fermann, A. Foltynowicz, Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs. Phys. Rev. A 93, 021802 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    D. McKean, CH stretching frequencies, bond lengths and strengths in halogenated ethylenes. Spectrochim. Acta Part A Mol. Spectrosc. 31, 1167–1186 (1975)ADSCrossRefGoogle Scholar
  23. 23.
    N. Zvereva-Loëte, J. Demaison, H. Rudolph, Ab initio anharmonic force field and equilibrium structure of vinyl bromide. J. Mol. Spectrosc. 236, 248–254 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    D. de Kerckhove Varent, Contribution a l’etude de la molecule de bromure de vinyle en spectroscopie hertzienne. II. Bromure de vinyle monodeutere et substitue en 13C, second ordre du couplage quadripolaire, structure de la molecule. Ann. Soc. Sci. Brux. T84, 277–292 (1970)Google Scholar
  25. 25.
    A. Pietropolli Charmet, P. Stoppa, A. Baldacci, S. Giorgianni, S. Ghersetti, Diode laser spectrum and rovibrational study of the \(\nu _6\) fundamental of vinyl bromide. J. Mol. Struct. 612, 213–221 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    M. Hayashi, C. Ikeda, T. Inagusa, Microwave spectrum, structure, and nuclear quadrupole coupling constant tensor of vinyl bromide and iodide. J. Mol. Spectrosc. 139, 299–312 (1990)ADSCrossRefGoogle Scholar
  27. 27.
    PGOPHER, A program for simulating rotational, vibrational and electronic spectra, C. M. Western, University of Bristol.
  28. 28.
    O. Pirali, V. Boudon, J. Oomens, M. Vervloet, Rotationally resolved infrared spectroscopy of adamantane. J. Chem. Phys. 136, 024310 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    J. Oomens, N. Polfer, O. Pirali, Y. Ueno, R. Maboudian, P.W. May, J. Filik, J.E. Dahl, S. Liu, R.M. Carlson, Infrared spectroscopic investigation of higher diamondoids. J. Mol. Spectrosc. 238, 158–167 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    T. Baer, W.L. Hase, Unimolecular Reaction Dynamics (Oxford University Press, New York, 1996)Google Scholar
  31. 31.
    B.S. Hudson, D.G. Allis, S.F. Parker, A.J. Ramirez-Cuesta, H. Herman, H. Prinzbach, Infrared, Raman, and inelastic neutron scattering spectra of dodecahedrane: an I(h) molecule in T(h) site symmetry. J. Phys. Chem. A 109, 3418–24 (2005)CrossRefGoogle Scholar
  32. 32.
    S.K. Tokunaga, R.J. Hendricks, M.R. Tarbutt, B. Darquié, High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules (2016), arXiv:1607.08741
  33. 33.
    S.M. Foreman, D.J. Jones, J. Ye, Flexible and rapidly configurable femtosecond pulse generation in the mid-IR. Opt. Lett. 28, 370 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    A. Ruehl, A. Gambetta, I. Hartl, M.E. Fermann, K.S.E. Eikema, M. Marangoni, Widely-tunable mid-infrared frequency comb source based on difference frequency generation. Opt. Lett. 37, 2232 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    A. Gambetta, N. Coluccelli, M. Cassinerio, D. Gatti, P. Laporta, G. Galzerano, M. Marangoni, Milliwatt-level frequency combs in the \(8-14\) \(\mu\)m range via difference frequency generation from an Er:fiber oscillator. Opt. Lett. 38, 1155 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Q.Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W.J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, C. Sirtori, High power frequency comb based on mid-infrared quantum cascade laser at \(\lambda \sim 9 \mu\)m. Appl. Phys. Lett. 106, 051105 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    K.F. Lee, C.J. Hensley, P.G. Schunemann, M.E. Fermann, Difference frequency generation in orientation-patterned gallium phosphide. In Conf. Lasers Electro-Optics, page STu1Q.3. OSA, Washington, D.C. (2016). ISBN 978-1-943580-11-8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.JILA, National Institute of Standards and Technology and University of Colorado, Department of PhysicsUniversity of ColoradoBoulderUSA
  2. 2.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations