Applied Physics B

, 122:278 | Cite as

Dispersive Fourier transformation femtosecond stimulated Raman scattering

  • Sven Dobner
  • Carsten Fallnich


We present the first proof-of-principle spectroscopic measurements with purely passive dispersive Fourier transformation femtosecond stimulated Raman scattering. In femtosecond stimulated Raman scattering, the full Raman scattering spectrum is efficiently obtained, as all Raman transitions are coherently excited with the combination of a narrow-bandwidth and a broad-bandwidth (femtosecond) pulse at once. Currently, the detection speed of the spectra is limited by the read-out time of classical, comparably slow CCD-based spectrometers. We show a reduction in the acquisition time of Raman signatures by applying the dispersive Fourier transformation, a method employing wavelength-to-time transformation, in order to record the spectral composition of a single pulse with a single fast photodiode. This arrangement leads to an acquisition time of Raman signatures, scaling inversely with the repetition frequency of the applied laser system, which in our case corresponds to the order of microseconds.


Pump Pulse Hyperspectral Imaging Probe Pulse Chromatic Dispersion Raman Scatter Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank V. Gerke and his group at the Institute of Medical Biochemistry (ZMBE) in Münster, Germany, for fruitful discussions.


We gratefully acknowledge funding by the Cells in Motion cluster of excellence (EXC 1003) within the pilot project No. PP-2014-07. Additionally, we acknowledge scientific equipment support of the state North Rhine-Westphalia and the Deutsche Forschungsgemeinschaft (DFG) within the DFGs Mayor Research Instrumentation Program by Project No. INST 211/592-1 FUGG.


  1. 1.
    R. Salzer, H.W. Siesler (eds.), Infrared and Raman Spectroscopic Imaging (Wiley, Hoboken, 2009)Google Scholar
  2. 2.
    T. Dieing, W. Ibach, in Confocal Raman Microscopy, ed. by T. Dieing, O. Hollricher, J. Toporski (Springer, Berlin, 2010). (Chap. 4)Google Scholar
  3. 3.
    D.W. McCamant, P. Kukura, R.A. Mathies, Appl. Spectrosc. 57, 1317 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    S.-Y. Lee, D. Zhang, D.W. McCamant, P. Kukura, R.A. Mathies, J. Chem. Phys. 121, 3632 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    B. Zhao, K. Niu, X. Li, S.-Y. Lee, Sci. China Chem. 54, 1989 (2011)CrossRefGoogle Scholar
  6. 6.
    D.W. McCamant, P. Kukura, R.A. Mathies, J. Phys. Chem. A 107, 8208 (2003)CrossRefGoogle Scholar
  7. 7.
    P. Kukura, D.W. McCamant, R.A. Mathies, Annu. Rev. Phys. Chem. 58, 461 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    R.R. Frontiera, R.A. Mathies, Laser Photonics Rev. 5, 102 (2011)CrossRefGoogle Scholar
  9. 9.
    R.R. Frontiera, C. Fang, J. Dasgupta, R.A. Mathies, Phys. Chem. Chem. Phys. 14, 405 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Shim, R.A. Mathies, J. Phys. Chem. B 112, 4826 (2008)CrossRefGoogle Scholar
  11. 11.
    H. Ando, B.P. Fingerhut, K.E. Dorfman, J.D. Biggs, S. Mukamel, J. Am. Chem. Soc. 136, 14801 (2014)CrossRefGoogle Scholar
  12. 12.
    E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, P. Gilch, Appl. Phys. B 87, 389 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    S. Dobner, C. Fallnich, J. Chem. Phys. 140, 084201 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    K. Goda, B. Jalali, Nat. Photonics 7, 102 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    T. Godin, B. Wetzel, T. Sylvestre, Opt. Express 21, 994 (2013)CrossRefGoogle Scholar
  17. 17.
    B. Wetzel, A. Stefani, L. Larger, P.A. Lacourt, J.M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J.M. Dudley, Sci. Rep. 2, 882 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    K. Goda, K.K. Tsia, B. Jalali, Nature 458, 1145 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    D.R. Solli, J. Chou, B. Jalali, Nat. Photonics 2, 48 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Meng, G.I. Petrov, S. Cheng, J.A. Jo, K.K. Lehmann, V.V. Yakovlev, M.O. Scully, Proc. Natl. Acad. Sci. USA 112, 12315 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    C.L. Evans, E.O. Potma, M. Puoris’haag, D. Côté, C.P. Lin, X.S. Xie, Proc. Natl. Acad. Sci. USA 102, 16807 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    B.G. Saar, C.W. Freudiger, J. Reichman, C.M. Stanley, G.R. Holtom, X.S. Xie, Science 330, 1368 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    S. Dobner, P. Groß, C. Fallnich, J. Chem. Phys. 138, 244201 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    B. Marx, L. Czerwinski, R. Light, M. Somekh, P. Gilch, J. Raman Spectrosc. 45, 521 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    E. Ploetz, B. Marx, T. Klein, R. Huber, P. Gilch, Opt. Express 17, 18612 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Applied PhysicsWestfälische Wilhelms-UniversitätMünsterGermany
  2. 2.Cells-in-Motion Cluster of Excellence (EXC 1003 CiM)University of MünsterMünsterGermany

Personalised recommendations