Advertisement

Applied Physics B

, 122:277 | Cite as

Laser-induced incandescence from laser-heated silicon nanoparticles

  • Jan Menser
  • Kyle Daun
  • Thomas Dreier
  • Christof Schulz
Article

Abstract

This work describes the application of temporally and spectrally resolved laser-induced incandescence to silicon nanoparticles synthesized in a microwave plasma reactor. Optical properties for bulk silicon presented in the literature were extended for nanostructured particles analyzed in this paper. Uncertainties of parameters in the evaporation submodel, as well as measurement noise, are incorporated into the inference process by Bayesian statistics. The inferred nanoparticle sizes agree with results from transmission electron microscopy, and the determined accommodation coefficient matches the values of the preceding study.

Keywords

Heat Transfer Model Streak Camera Silicon Nanoparticles Liquid Silicon Evaporation Heat Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was carried out with support from the German Research Foundation, DFG (SCHU 1369/14). The participation of Kyle Daun was supported by a grant from the Alexander von Humboldt Foundation.

References

  1. 1.
    F.E. Kruis, H. Fissan, A. Peled, Synthesis of nanoparticles in the gas-phase for electronic, optical and magnetic applications—a review. J. Aerosol Sci. 29, 511–535 (1998)CrossRefGoogle Scholar
  2. 2.
    M. Swihart, Vapour phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8, 127–133 (2003)CrossRefGoogle Scholar
  3. 3.
    M. Leparoux, C. Schreuders, P. Fauchais, Improved plasma synthesis of Si-nanopowders by quenching. Adv. Eng. Mat. 10, 1147–1150 (2008)CrossRefGoogle Scholar
  4. 4.
    S. Hartner, D. Schwesig, I. Plümel, D.E. Wolf, A. Lorke, H. Wiggers, in Nanoparticles from the Gasphase: Formation, Structure, Properties, eds. by A. Lorke, M. Winterer, R. Schmechel, C. Schulz (Springer, Berlin Heidelberg, 2012), pp. 231–271Google Scholar
  5. 5.
    L. Mangolini, E. Thimsen, U. Kortshagen, High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655–659 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    G. Schierning, R. Theissmann, H. Wiggers, D. Sudfeld, A. Ebbers, D. Franke, V.T. Witusiewicz, M. Apel, Microcrystalline silicon formation by silicon nanoparticles. J. Appl. Phys. 103, 084305–084306 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    T. Hülser, S.M. Schnurre, H. Wiggers, C. Schulz, Gas-phase synthesis of nanoscale silicon as an economical route towards sustainable energy technology. KONA Powder Part. J. 29, 191–207 (2011)CrossRefGoogle Scholar
  8. 8.
    O.M. Feroughi, L. Deng, S. Kluge, T. Dreier, H. Wiggers, I. Wlokas, C. Schulz, “Experimental and numerical study of a HMDSO-seeded premixed laminar low-pressure flame for SiO2 nanoparticle synthesis”. Proc. Combust. Inst. 36. doi: 10.1016/j.proci.2016.07.131
  9. 9.
    C. Hecht, A. Abdali, T. Dreier, C. Schulz, Gas-temperature imaging in a microwave-plasma nanoparticle-synthesis reactor using multi-line NO-LIF thermometry. Z. Phys. Chem. 225, 1225–1235 (2011)CrossRefGoogle Scholar
  10. 10.
    H.A. Michelsen, C. Schulz, G.J. Smallwood, S. Will, Laser-induced incandescence: particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51, 2–48 (2015)CrossRefGoogle Scholar
  11. 11.
    C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Laser-induced incandescence: recent trends and current questions. Appl. Phys. B 83, 333–354 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    P. Roth, A.V. Filippov, In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission. J. Aerosol Sci. 27, 95–104 (1996)CrossRefGoogle Scholar
  13. 13.
    R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Can soot primary particle size be determined using laser-induced incandescence? Combust. Flame 116, 291–296 (1999)CrossRefGoogle Scholar
  14. 14.
    S. Bejaoui, R. Lemaire, P. Desgroux, E. Therssen, Experimental study of the E(m, λ)/E(m 1064 ratio as a function of wavelength, fuel type, height above the burner and temperature. Appl. Phys. B Lasers Opt. 116, 313–323 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    X. López-Yglesias, P.E. Schrader, H.A. Michelsen, Soot maturity and absorption cross sections. J. Aerosol Sci. 75, 43–64 (2014)CrossRefGoogle Scholar
  16. 16.
    T.A. Sipkens, R. Mansmann, K.J. Daun, N. Pettermann, J. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schulz, In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence. Appl. Phys. B 119, 561–575 (2014)CrossRefGoogle Scholar
  17. 17.
    N. Petermann, N. Stein, G. Schierning, R. Theissmann, B. Stoib, M.S. Brandt, C. Hecht, C. Schulz, H. Wiggers, Plasma synthesis of nanostructures for improved thermoelectric properties. J. Phys. D Appl. Phys. 44, 174034 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M. Leschowski, T. Dreier, C. Schulz, An automated thermophoretic soot sampling device for laboratory-scale high-pressure flames. Rev. Sci. Instrum. 85, 045103 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    K.A. Thomson, M.R. Johnson, D.R. Snelling, G.J. Smallwood, Diffuse-light two-dimensional line-of-sight attenuation for soot concentration measurements. Appl.Opt. 47, 694–703 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, Two-dimensional imaging of soot volume fraction in laminar diffusion flames. Appl. Opt. 38, 2478–2485 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame. Int. J. Heat Mass Trans. 49, 777–788 (2006)CrossRefGoogle Scholar
  22. 22.
    C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983)Google Scholar
  23. 23.
    T.C. Bond, R.W. Bergstrom, Light absorption by carbonaceous particles: an investigative review. Aerosol Sci. Tech. 40, 27–67 (2006)CrossRefGoogle Scholar
  24. 24.
    P.J. Hadwin, T.A. Sipkens, K.A. Thomson, F. Liu, K.J. Daun, Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements. Appl. Phys. B 122, 1–16 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    K.M. Shvarev, B.A. Baun, P.V. Gel’d, Optical properties of liquid silicon. Sov. Phys. Solid State 16, 2111–2112 (1975)Google Scholar
  26. 26.
    K.D. Li, P.M. Fauchet, Drude parameters of liquid silicon at the melting temperature. Appl. Phys. Lett. 51, 1747–1749 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    H. Kawamura, H. Fukuyama, M. Watanabe, T. Hibiya, Normal spectral emissivity of undercooled liquid silicon. Meas. Sci. Tech. 16, 386–393 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    M.J. Assael, I.J. Armyra, J. Brillo, S.V. Stankus, J.W. Wu, W.A. Wakeham, Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zin. J. Chem. Phys. Ref. Data 41, 033101 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    H. Sasaki, A. Ikari, K. Terashima, S. Kimura, Temperature dependence of the electrical resistivity of molten silicon. Jpn. J. Appl. Phys. 34, 3426–3431 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    R. Kojima Endo, Y. Fujihara, M. Susa, Calculation of the density and heat capacity of silicon by molecular dynamics simulation. High Temp. High Press. 35(36), 505–511 (2003)CrossRefGoogle Scholar
  31. 31.
    P.D. Desai, Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data 15, 967–983 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    E.H. Kennard, Kinetic theory of gases: with an introduction to statistical mechanics (McGraw-Hill, New York, 1938)Google Scholar
  33. 33.
    V. Sevast’yanov, P.Y. Nosatenko, Y. Nosatenko, V. Gorskii, Y.S. Ezhov, D. Sevast’yanov, E. Simonenko, N. Kuznetsov, “Experimental and theoretical determination of the saturation vapor pressure of silicon in a wide range of temperatures”. Russ. J. Inorg. Chem. 55, 2073–2088 (2010)CrossRefGoogle Scholar
  34. 34.
    T. Tomooka, Y. Shoji, T. Matsui, High temperature vapor pressure of Si. J Mass Spectrom Soc Jpn. 47, 49–53 (1999)CrossRefGoogle Scholar
  35. 35.
    S.I. Lopatin, V.L. Stolyarova, V.G. Sevast’yanov, P.Y. Nosatenko, V.V. Gorskii, D.V. Sevast’yanov, N.T. Kuznetsov, “Determination of the saturation vapor pressure of silicon by Knudsen cell mass spectrometry”. Russ. J. Inorg. Chem. 57, 219–225 (2012)CrossRefGoogle Scholar
  36. 36.
    F. Millot, V. Sarou-Kaniana, J.-C. Rifflet, B. Vinet, The surface tension of liquid silicon at high temperature. Mater. Sci. Eng., A 495, 8–13 (2008)CrossRefGoogle Scholar
  37. 37.
    P. van de Weijer, B.H. Zwerver, Laser-induced fluorescence of OH and SiO molecules during thermal chemical vapour deposition of SiO2 from silane-oxygen mixtures. Chem. Phys. Lett. 163, 48–54 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    T. Dreier, O. Feroughi, A. Langer, C. Schulz, Spatially-resolved measurements of gas-phase temperature and SiO concentration in a low-pressure nanoparticle synthesis reactor using laser-induced fluorescence. in Imaging and Applied Optics, OSA Technical Digest (online), (Optical Society of America, 2014), Paper LM1D.2Google Scholar
  39. 39.
    G.E. Jellison, D.H. Lowndes, Measurements of the optical properties of silicon and Germainum using nanosecond time-resolved ellipsometry. App. Phys. Lett. 51, 352–354 (1987)ADSCrossRefGoogle Scholar
  40. 40.
    P. Buffat, J.P. Borel, Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287–2298 (1976)ADSCrossRefGoogle Scholar
  41. 41.
    V. Beyer, D.A. Greenhalgh, Laser induced incandescence under high vacuum conditions. Appl. Phys. B 83, 455–467 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    R.L. Vander, Wal, “Laser-induced incandescence: excitation and detection conditions, material transformations and calibration”. Appl. Phys. B 96, 601–611 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    D. Giulietti, L. A. Gizzi, “X-ray emission from laser-produced plasmas”, La Rivista del Nuovo Cimento (1978–1999) 1998, 21, 1–93Google Scholar
  44. 44.
    T. Sipkens, N. Singh, K. Daun, N. Bizmark, M. Ioannidis, Examination of the thermal accommodation coefficient used in the sizing of iron nanoparticles by time-resolved laser-induced incandescence. Appl. Phys. B 119, 561–575 (2015)CrossRefGoogle Scholar
  45. 45.
    U. von Toussaint, Bayesian inference in physics. Rev. Mod. Phys. 83, 943–999 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.IVG, Institute for Combustion und Gas Dynamics – Reactive FluidsUniversity of Duisburg EssenDuisburgGermany
  2. 2.CENIDE, Center for Nanointegration Duisburg EssenUniversity of Duisburg EssenDuisburgGermany
  3. 3.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada
  4. 4.Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooCanada

Personalised recommendations