Applied Physics B

, 122:267 | Cite as

Conductivity and discharge guiding properties of mid-IR laser filaments

  • D. Mongin
  • V. Shumakova
  • S. Ališauskas
  • E. Schubert
  • A. Pugžlys
  • J. Kasparian
  • J. P. Wolf
  • A. Baltuška
Rapid Communication


The electric properties of mid-IR filaments in air have been investigated in comparison with their more traditional near-IR counterparts. Although the number of ions left after the pulse is similar for both spectral regions, filaments at 3.9 µm produce lower electron densities and lower-pressure depression, which prevent them in the present conditions (25 mJ, 90 fs) to trigger or guide HV discharges (130 kV over 12 cm). We conclude that mid-IR filaments require significantly higher energy/power levels than their near-IR counterparts for applications related to lightning control and for fully taking advantage of their unique propagation properties (single, large diameter filaments over long distances).



We acknowledge support from the ERC advanced Grant FILATMO and the technical support of M. Moret and C. Barreiro (University of Geneva). We also acknowledge the numerical simulations performed by N. Berti (University of Geneva). From the Austrian side, the research was supported by the Austrian Science Fund (FWF) through the grants NextLite PO3 (Project No. F4903-N23) and MIR Filament (Project No. P26658-N27)


  1. 1.
    A.V. Mitrofanov, A.A. Voronin, D.A. Sidorov-Biryukov, A. Pugžlys, E.A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A.B. Fedotov, A. Baltuška, A.M. Zheltikov, Sci. Rep. 5, 8368 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    P. Panagiotopoulos, P. Whalen, M. Kolesik, J.V. Moloney, Nat. Photonics 9, 543–548 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Y.E. Geints, A.A. Zemlyanov, J. Opt. Soc. Am. B 31, 788 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47–189 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    A. Houard, V. Jukna, G. Point, Y.-B. André, S. Klingebiel, M. Schultze, K. Michel, T. Metzger, A. Mysyrowicz, Opt. Express 24, 7437 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    D. Kartashov, S. Alisauskas, A. Pugzlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, A. Baltuska, Opt. Lett. 37, 3456–3458 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    G. Andriukaitis, E. Kaksis, G. Polonyi, J. Fülöp, A. Baltuska, A. Pugzlys, in (OSA, 2015), p. SM1P.7Google Scholar
  8. 8.
    M.N. Polyanskiy, M. Babzien, I.V. Pogorelsky, Optica 2, 675 (2015)CrossRefGoogle Scholar
  9. 9.
    D. Haberberger, S. Tochitsky, C. Joshi, Opt. Express 18, 17865 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    P. Lassonde, N. Thir, L. Arissian, G. Ernotte, F. Poitras, T. Ozaki, A. Larameé, M. Boivin, H. Ibrahim, F. Légaré, B.E. Schmidt, IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015)CrossRefGoogle Scholar
  11. 11.
    E. Schubert, D. Mongin, J. Kasparian, J.-P. Wolf, Opt. Express 23, 28640 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M.M. Murnane, H.C. Kapteyn, Opt. Lett. 36, 2755 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    H. Zhao, Spectral Sensitivity Database, University of Tokyo (2013), Accessed 31 May 2013
  14. 14.
    P. Polynkin, Appl. Phys. Lett. 101, 164102 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    S. Henin, Y. Petit, D. Kiselev, J. Kasparian, J.-P. Wolf, Appl. Phys. Lett. 95, 091107 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    D. Abdollahpour, S. Suntsov, D.G. Papazoglou, S. Tzortzakis, Opt. Express 19, 16866 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.-P. Wolf, Rep. Progress Phys. 70, 1633–1713 (2007). arXiv: physics/0612063
  18. 18.
    F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. Johnston, J. Kieffer, H.P. Mercure, H. Pepin, F. Rizk, IEEE Trans. Plasma Sci. 28, 418–433 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    M.N. Shneider, A.M. Zheltikov, R.B. Miles, Phys. Plasmas 18, 063509 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    J. Papeer, M. Botton, D. Gordon, P. Sprangle, A. Zigler, Z. Henis, New J. Phys. 16, 123046 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    F.A.M. Rizk, G.N. Trinh, High Voltage Engineering (CRC Press, Boca Raton, 2014)CrossRefGoogle Scholar
  22. 22.
    S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, P. Mora, Phys. Rev. E 64, 057401 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    D. Comtois, C.Y. Chien, A. Desparois, F. Gérin, G. Jarry, T.W. Johnston, J.C. Kieffer, B.L. Fontaine, F. Martin, R. Mawassi, H. Pépin, F.A.M. Rizk, F. Vidal, P. Couture, H.P. Mercure, C. Potvin, A. Bondiou-Clergerie, I. Gallimberti, Appl. Phys. Lett. 76, 819–821 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    A. Perelomov, V. Popov, M. Terent’ev, Sov. Phys.—JETP 23, 924–934 (1966)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • D. Mongin
    • 1
  • V. Shumakova
    • 2
  • S. Ališauskas
    • 2
  • E. Schubert
    • 1
  • A. Pugžlys
    • 2
  • J. Kasparian
    • 1
  • J. P. Wolf
    • 1
  • A. Baltuška
    • 2
  1. 1.GAP-BiophotonicsUniversity of GenevaGeneva 4Switzerland
  2. 2.Photonics InstituteVienna University of TechnologyViennaAustria

Personalised recommendations