Applied Physics B

, 122:235 | Cite as

Possibility of high-energy THz generation in LiTaO3

  • L. Tokodi
  • A. Buzády
  • J. Hebling
  • L. Pálfalvi


Due to the absence of the detrimental three-photon absorption, LiTaO3 is a promising crystal for terahertz generation when pumping with an 800-nm pump wavelength. The nonlinear optical, photorefractive and dielectric (except the bandwidth) properties at the optical and the terahertz wavelength are very similar to those of LiNbO3. The absorption coefficient and refractive index spectra of 1 mol% Mg-doped stoichiometric LiTaO3 measured by terahertz time domain spectroscopy are presented. Optimization calculations have been performed, and results for a hybrid-type high-energy terahertz source using LiTaO3 are presented. About 90 % diffraction efficiency is predicted with a practically feasible contact grating.


Diffraction Efficiency LiTaO3 High Diffraction Efficiency Groove Density Extraordinary Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from Hungarian Scientific Research Fund (OTKA) grant number 113083 is acknowledged. The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary. The authors thank Matthew Cliffe for his help in improving the presentation of the manuscript.


  1. 1.
    J. Hebling, G. Almási, I.Z. Kozma, J. Kuhl, Opt. Express 10(21), 1161–1166 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    J.A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, J. Hebling, Opt. Express 22(17), 20155–20163 (2014)CrossRefGoogle Scholar
  3. 3.
    J.A. Fülöp, L. Pálfalvi, G. Almási, J. Hebling, Opt. Express 18(12), 12311–12327 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    L. Pálfalvi, J.A. Fülöp, G. Almási, J. Hebling, Appl. Phys. Lett. 92(17), 171107 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    L. Pálfalvi, Z. Ollmann, L. Tokodi, J. Hebling, Opt. Express 24(8), 8156–8169 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, G. Gadret, Appl. Phys. B 96(2), 423–432 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    W. Martienssen, H. Warlimont, Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin Heidelberg, 2005)CrossRefGoogle Scholar
  8. 8.
    T. Suhara, M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer, Berlin Heidelberg, 2013)Google Scholar
  9. 9.
    H. Ishizuki, T. Taira, Opt. Express 16(21), 16963–16970 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, T.E. Mitchell, Appl. Phys. Lett. 73(21), 3073–3075 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    S. Kumaragurubaran, S. Takekawa, M. Nakamura, K. Kitamura, J. Cryst. Growth 292(2), 332–336 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    J. Hebling, A.G. Stepanov, G. Almási, B. Bartal, J. Kuhl, Appl. Phys. B 78(5), 593–599 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, A. Galvanauskas, Appl. Phys. Lett. 76(18), 2505–2507 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Y.-S. Lee, T. Meade, M. DeCamp, T. Norris, A. Galvanauskas, Appl. Phys. Lett. 77(9), 1244–1246 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    N.E. Yu, C. Kang, H.K. Yoo, C. Jung, Y.L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, S. Takekawa, Appl. Phys. Lett. 93(4), 041104 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    F. Holtmann, J. Imbrock, C. Baumer, H. Hesse, E. Kratzig, D. Kip, J. Appl. Phys. 96(12), 7455–7459 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    K. Kitamura, Y. Furukawa, S. Takekawa, T. Hatanaka, H. Ito, V. Gopalan, Ferroelectrics 257(1), 235–243 (2001)CrossRefGoogle Scholar
  18. 18.
    K. Polgár, L. Kovács, I. Földvári, I. Cravero, Solid State Commun. 59(6), 375–379 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, M. Wöhlecke, Appl. Phys. Lett. 70(21), 2801–2803 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    X. Wu, S. Carbajo, K. Ravi, F. Ahr, G. Cirmi, Y. Zhou, O.D. Mücke, F.X. Kärtner, Opt. Lett. 39(18), 5403–5406 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    S.-C. Zhong, Z.-H. Zhai, J. Li, L.-G. Zhu, J. Li, K. Meng, Q. Liu, L.-H. Du, J.-H. Zhao, Z.-R. Li, Opt. Express 23(24), 31313–31323 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    C. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, M. Wöhlecke, J. Appl. Phys. 93(5), 3102–3104 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    W.T. Hsu, Z.B. Chen, C.C. Wu, R.K. Choubey, C.W. Lan, Materials 5(2), 227 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    A.L. Alexandrovski, G. Foulon, L.E. Myers, R.K. Route, M.M. Fejer, UV and Visible Absorption in LiTaO3. In Proceedings of the SPIE 3610, Laser Material Crystal Growth and Nonlinear Materials and Devices, vol 44 (1999)Google Scholar
  25. 25.
    L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, K. Polgár, K. Lengyel, R. Szipöcs, J. Appl. Phys. 95(3), 902–908 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, L. Pálfalvi, J. Infrared Millim. Terahertz Waves 36(12), 1203–1209 (2015)CrossRefGoogle Scholar
  27. 27.
    K. Seiji, K. Hideaki, N. Seizi, T. MitsuoWada, Jpn. J. Appl. Phys. 42(9B), 6238 (2003)Google Scholar
  28. 28.
    S. Kojima, T. Mori, AIP Conf. Proc. 1627(1), 52–57 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    L. Wu, L. Jiang, C. Ding, Q. Sheng, X. Ding, J. Yao, J. Infrared Millim. Terahertz Waves 36(1), 1–6 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Schall, H. Helm, S.R. Keiding, Int. J. Infrared Millim. Waves 20(4), 595–604 (1999)CrossRefGoogle Scholar
  31. 31.
    O. Gayer, Z. Sacks, E. Galun, A. Arie, Appl. Phys. B 91(2), 343–348 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    W.-L. Weng, Y.-W. Liu, X.-Q. Zhang, Chin. Phys. Lett. 25(12), 4303 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    J. Hebling, Opt. Quantum Electron. 28(12), 1759–1763 (1996)CrossRefGoogle Scholar
  34. 34.
    J.C. Diels, W. Rudolph, P.F. Liao, P. Kelley, Ultrashort Laser Pulse Phenomena (Elsevier, Amsterdam, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of PécsPecsHungary
  2. 2.High-Field Terahertz Research Group, MTA-PTEPecsHungary
  3. 3.Szentágothai Research CentreUniversity of PécsPecsHungary

Personalised recommendations