Skip to main content
Log in

Complex extraordinary dielectric function of Mg-doped lithium niobate crystals at terahertz frequencies

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We study the dispersion of the extraordinary dielectric function real and imaginary parts in the wide terahertz-frequency range of the lowest polariton branch for bulk LiNbO3 and Mg:LiNbO3 crystals. At frequencies 0.1–2.5 THz, both dispersion parts are measured by means of standard time-domain terahertz spectroscopy, and at higher frequencies up to 5.5 THz, the dielectric function real part is determined using a common scheme of spontaneous parametric down-conversion under near-forward Raman scattering by phonon polaritons. A special approach is applied for measuring of the dielectric function imaginary part at frequencies 1–3 THz, based on the analysis of visibility of three-wave second-order interference under spontaneous parametric down-conversion. The generalized approximate expressions are obtained for complex dielectric function dispersion within the lower polariton branches of LiNbO3 and Mg:LiNbO3. It is shown that the well-known decrease in terahertz-wave absorption of lithium niobate crystals under Mg-doping is caused by changes in the defect structure and reduction of coupling of the terahertz-frequency polaritons with Debye relaxational mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E. Pickwell, V.P. Wallace, J. Phys. D 39, R301 (2003)

    Article  Google Scholar 

  2. T. Hattory, M. Sakamoto, Appl. Phys. Lett. 90, 261106 (2007)

    Article  ADS  Google Scholar 

  3. J. Shan, A. Nahata, T.F. Heinz, J. Nonlinear Opt. Phys. Mater. 11, 31 (2002)

    Article  ADS  Google Scholar 

  4. G.Kh. Kitaeva, Laser Phys. Lett. 5(8), 559 (2008)

    Article  ADS  Google Scholar 

  5. J.A. Fulop, Z. Ollmann, Cs. Lombosi, C. Skrobol, S. Klingebiel, L. Palfalvi, F. Krausz, S. Karsch, J. Hebling, Opt. Express 22, 20155 (2014)

    Article  ADS  Google Scholar 

  6. Y.S. Lee, T. Meade, T.B. Norris, A. Galvanauskas, Appl. Phys. Lett. 78, 3583 (2001)

    Article  ADS  Google Scholar 

  7. H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, J. Infrared Millim. Terahertz Waves 35, 25–37 (2014)

    Article  Google Scholar 

  8. G.Kh. Kitaeva, S.P. Kovalev, I.I. Naumova, R.A. Akhmedzhanov, I.E. Ilyakov, B.V. Shishkin, E.V. Suvorov, Appl. Phys. Lett. 96, 071106 (2010)

    Article  ADS  Google Scholar 

  9. O.F. Schirmer, M. Imlau, C. Merschjann, B. Schoke, J. Phys. Condens. Matter 21, 123201 (2009)

    Article  ADS  Google Scholar 

  10. T. Qiu, M. Maier, Phys. Rev. B 56, R5717 (1997)

    Article  ADS  Google Scholar 

  11. G.H. Ma, S.H. Tang, G.Kh. Kitaeva, I.I. Naumova, J. Opt. Soc. Am. B 23, 81 (2006)

    Article  ADS  Google Scholar 

  12. L. Palfalvi, J. Hebling, J. Kuhl, Б. Peter, K. Polgar, J. Appl. Phys. 97, 123505 (2005)

    Article  ADS  Google Scholar 

  13. M. Schall, H. Helm, S.R. Keiding, Int. J. Infrared Millim. Waves 20, 595 (1999)

    Article  Google Scholar 

  14. J. Kiessling, K. Buse, I. Breunig, J. Opt. Soc. Am. B 30, 950 (2013)

    Article  ADS  Google Scholar 

  15. K.A. Kuznetsov, S.P. Kovalev, G.K. Kitaeva et al., Appl. Phys. B 101, 811–815 (2010)

    Article  ADS  Google Scholar 

  16. A.V. Burlakov, Yu.B. Mamaeva, A.N. Penin, M.V. Chekhova, J. Exp. Theor. Phys. 93, 55 (2001)

    Article  ADS  Google Scholar 

  17. I.I. Naumova, Crystallogr. Rep. 39, 1119 (1994)

    Google Scholar 

  18. G.A. Askaryan, Sov. Phys. JETP 15, 943 (1962)

    Google Scholar 

  19. D.H. Auston, K.P. Cheung, J.A. Valdmanis, D.A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984)

    Article  ADS  Google Scholar 

  20. S.B. Bodrov, A.N. Stepanov, M.I. Bakunov, B.V. Shishkin, I.E. Ilyakov, R.A. Akhmedzhanov, Opt. Express 17, 1871 (2009)

    Article  ADS  Google Scholar 

  21. Yu.H. Avetisyan, A.H. Makaryan, K.Kh. Khachatryan, V.R. Tadevosyan, J. Contemp. Phys. (Armen. Acad. Sci.) 43(3), 121–124 (2008)

    Article  ADS  Google Scholar 

  22. S.P. Kovalev, G.Kh. Kitaeva, J. Opt. Soc. Am. B 30, 2650 (2013)

    Article  ADS  Google Scholar 

  23. W. Withayachumnankul, M. Naftaly, J Infrared Millim. Terahertz Waves 35, 610 (2014)

    Article  Google Scholar 

  24. D.N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, New York, 1988)

    Google Scholar 

  25. G.Kh. Kitaeva, A.N. Penin, JETP Lett. 82, 350 (2005)

    Article  ADS  Google Scholar 

  26. A.V. Burlakov, M.V. Chekhova, D.N. Klyshko, S.P. Kulik, A.N. Penin, Y.H. Shih, D.V. Strekalov, Phys. Rev. A 56, 3214 (1997)

    Article  ADS  Google Scholar 

  27. A.V. Burlakov, O.A. Karabutova, Yu.B. Mamaeva, D.Yu. Korystov, S.P. Kulik, M.V. Chekhova, Laser Phys. 12, 825 (2002)

    Google Scholar 

  28. G.Kh. Kitaeva, S.P. Kovalev, A.N. Penin, A.N. Tuchak, P.V. Yakunin, J. Infrared Millim. Terahertz Waves 32, 1144 (2011)

    Article  Google Scholar 

  29. A.S. Barker Jr., R. Loudon, Phys. Rev. 158, 433 (1967)

    Article  ADS  Google Scholar 

  30. A.S. Barker Jr., Phys. Rev. 165, 917 (1968)

    Article  ADS  Google Scholar 

  31. U.T. Schwarz, M. Maier, Phys. Rev. B 58, 766 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. M.V. Chekhova, V.V. Kornienko, K.A. Grishunin, and Dr. D.V. Lopaev for the discussions and some helpful remarks. This study was supported by the Russian Foundation for Basic Research (Project Nos. 14-22-02091, 16-02-00258, 16-29-03294) and by Ministry of Education and Science of the Russian Federation (State Task No. 11.144.2014/K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, K.A., Kitaeva, G.K., Kovalev, S.P. et al. Complex extraordinary dielectric function of Mg-doped lithium niobate crystals at terahertz frequencies. Appl. Phys. B 122, 223 (2016). https://doi.org/10.1007/s00340-016-6498-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6498-5

Keywords

Navigation