Applied Physics B

, 122:223 | Cite as

Complex extraordinary dielectric function of Mg-doped lithium niobate crystals at terahertz frequencies

  • K. A. KuznetsovEmail author
  • G. Kh. Kitaeva
  • S. P. Kovalev
  • S. A. Germansky
  • A. M. Buryakov
  • A. N. Tuchak
  • A. N. Penin


We study the dispersion of the extraordinary dielectric function real and imaginary parts in the wide terahertz-frequency range of the lowest polariton branch for bulk LiNbO3 and Mg:LiNbO3 crystals. At frequencies 0.1–2.5 THz, both dispersion parts are measured by means of standard time-domain terahertz spectroscopy, and at higher frequencies up to 5.5 THz, the dielectric function real part is determined using a common scheme of spontaneous parametric down-conversion under near-forward Raman scattering by phonon polaritons. A special approach is applied for measuring of the dielectric function imaginary part at frequencies 1–3 THz, based on the analysis of visibility of three-wave second-order interference under spontaneous parametric down-conversion. The generalized approximate expressions are obtained for complex dielectric function dispersion within the lower polariton branches of LiNbO3 and Mg:LiNbO3. It is shown that the well-known decrease in terahertz-wave absorption of lithium niobate crystals under Mg-doping is caused by changes in the defect structure and reduction of coupling of the terahertz-frequency polaritons with Debye relaxational mode.


LiNbO3 Dielectric Function Lithium Niobate Defect Mode Lithium Niobate Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Dr. M.V. Chekhova, V.V. Kornienko, K.A. Grishunin, and Dr. D.V. Lopaev for the discussions and some helpful remarks. This study was supported by the Russian Foundation for Basic Research (Project Nos. 14-22-02091, 16-02-00258, 16-29-03294) and by Ministry of Education and Science of the Russian Federation (State Task No. 11.144.2014/K).


  1. 1.
    E. Pickwell, V.P. Wallace, J. Phys. D 39, R301 (2003)CrossRefGoogle Scholar
  2. 2.
    T. Hattory, M. Sakamoto, Appl. Phys. Lett. 90, 261106 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    J. Shan, A. Nahata, T.F. Heinz, J. Nonlinear Opt. Phys. Mater. 11, 31 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    G.Kh. Kitaeva, Laser Phys. Lett. 5(8), 559 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Fulop, Z. Ollmann, Cs. Lombosi, C. Skrobol, S. Klingebiel, L. Palfalvi, F. Krausz, S. Karsch, J. Hebling, Opt. Express 22, 20155 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Y.S. Lee, T. Meade, T.B. Norris, A. Galvanauskas, Appl. Phys. Lett. 78, 3583 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, J. Infrared Millim. Terahertz Waves 35, 25–37 (2014)CrossRefGoogle Scholar
  8. 8.
    G.Kh. Kitaeva, S.P. Kovalev, I.I. Naumova, R.A. Akhmedzhanov, I.E. Ilyakov, B.V. Shishkin, E.V. Suvorov, Appl. Phys. Lett. 96, 071106 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    O.F. Schirmer, M. Imlau, C. Merschjann, B. Schoke, J. Phys. Condens. Matter 21, 123201 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    T. Qiu, M. Maier, Phys. Rev. B 56, R5717 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    G.H. Ma, S.H. Tang, G.Kh. Kitaeva, I.I. Naumova, J. Opt. Soc. Am. B 23, 81 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    L. Palfalvi, J. Hebling, J. Kuhl, Б. Peter, K. Polgar, J. Appl. Phys. 97, 123505 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    M. Schall, H. Helm, S.R. Keiding, Int. J. Infrared Millim. Waves 20, 595 (1999)CrossRefGoogle Scholar
  14. 14.
    J. Kiessling, K. Buse, I. Breunig, J. Opt. Soc. Am. B 30, 950 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    K.A. Kuznetsov, S.P. Kovalev, G.K. Kitaeva et al., Appl. Phys. B 101, 811–815 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    A.V. Burlakov, Yu.B. Mamaeva, A.N. Penin, M.V. Chekhova, J. Exp. Theor. Phys. 93, 55 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    I.I. Naumova, Crystallogr. Rep. 39, 1119 (1994)Google Scholar
  18. 18.
    G.A. Askaryan, Sov. Phys. JETP 15, 943 (1962)Google Scholar
  19. 19.
    D.H. Auston, K.P. Cheung, J.A. Valdmanis, D.A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984)ADSCrossRefGoogle Scholar
  20. 20.
    S.B. Bodrov, A.N. Stepanov, M.I. Bakunov, B.V. Shishkin, I.E. Ilyakov, R.A. Akhmedzhanov, Opt. Express 17, 1871 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Yu.H. Avetisyan, A.H. Makaryan, K.Kh. Khachatryan, V.R. Tadevosyan, J. Contemp. Phys. (Armen. Acad. Sci.) 43(3), 121–124 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    S.P. Kovalev, G.Kh. Kitaeva, J. Opt. Soc. Am. B 30, 2650 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    W. Withayachumnankul, M. Naftaly, J Infrared Millim. Terahertz Waves 35, 610 (2014)CrossRefGoogle Scholar
  24. 24.
    D.N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, New York, 1988)Google Scholar
  25. 25.
    G.Kh. Kitaeva, A.N. Penin, JETP Lett. 82, 350 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    A.V. Burlakov, M.V. Chekhova, D.N. Klyshko, S.P. Kulik, A.N. Penin, Y.H. Shih, D.V. Strekalov, Phys. Rev. A 56, 3214 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    A.V. Burlakov, O.A. Karabutova, Yu.B. Mamaeva, D.Yu. Korystov, S.P. Kulik, M.V. Chekhova, Laser Phys. 12, 825 (2002)Google Scholar
  28. 28.
    G.Kh. Kitaeva, S.P. Kovalev, A.N. Penin, A.N. Tuchak, P.V. Yakunin, J. Infrared Millim. Terahertz Waves 32, 1144 (2011)CrossRefGoogle Scholar
  29. 29.
    A.S. Barker Jr., R. Loudon, Phys. Rev. 158, 433 (1967)ADSCrossRefGoogle Scholar
  30. 30.
    A.S. Barker Jr., Phys. Rev. 165, 917 (1968)ADSCrossRefGoogle Scholar
  31. 31.
    U.T. Schwarz, M. Maier, Phys. Rev. B 58, 766 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • K. A. Kuznetsov
    • 1
    Email author
  • G. Kh. Kitaeva
    • 1
  • S. P. Kovalev
    • 1
  • S. A. Germansky
    • 1
  • A. M. Buryakov
    • 2
  • A. N. Tuchak
    • 1
  • A. N. Penin
    • 1
  1. 1.M.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Radio Engineering, and ElectronicsMoscow State University of Information TechnologiesMoscowRussia

Personalised recommendations