Advertisement

Applied Physics B

, 122:217 | Cite as

A compact and robust diode laser system for atom interferometry on a sounding rocket

  • V. SchkolnikEmail author
  • O. Hellmig
  • A. Wenzlawski
  • J. Grosse
  • A. Kohfeldt
  • K. Döringshoff
  • A. Wicht
  • P. Windpassinger
  • K. Sengstock
  • C. Braxmaier
  • M. Krutzik
  • A. Peters
Rapid Communication

Abstract

We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone toward space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology, is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21 l and total mass of 27 kg, passed all qualification tests for operation on sounding rockets and is currently used in the integrated MAIUS flight system producing Bose–Einstein condensates and performing atom interferometry based on Bragg diffraction. The MAIUS payload is being prepared for launch in fall 2016. We further report on a reference laser system, comprising a rubidium stabilized DFB laser, which was operated successfully on the TEXUS 51 mission in April 2015. The system demonstrated a high level of technological maturity by remaining frequency stabilized throughout the mission including the rocket’s boost phase.

Keywords

Laser System Master Oscillator Power Amplifier Drop Tower Atom Interferometer Atom Chip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We want to thank the Germany Space Agency (DLR) for their support. Special thanks go to Dr. Rainer Kuhl (DLR) for his enthusiasm, motivation and guidance. We thank Menlo Systems for integrating the rubidium spectroscopy module into the FOKUS payload and operation throughout the joint sounding rocket mission. This work is supported by the German Space Agency DLR with funds provided by the Federal Ministry for Economic Affairs and Energy under grant numbers DLR 50WM 1133, 1237, 1238 and 1345.

References

  1. 1.
    M. Kasevich, S. Chu, Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181–184 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    A. Peters, K.Y. Chung, S. Chu, High-precision gravity measurements using atom interferometry. Metrologia 38, 25–61 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    J. McGuirk, G. Foster, J. Fixler, M. Snadden, M. Kasevich, Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A 65(3), 033608 (2002). doi: 10.1103/PhysRevA.65.033608 ADSCrossRefGoogle Scholar
  4. 4.
    T.L. Gustavson, A. Landragin, M.A. Kasevich, Rotation sensing with a dual atom-interferometer Sagnac gyroscope. Class. Quantum Gravity 17, 2385–2398 (2000)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, A. Peters, Mobile quantum gravity sensor with unprecedented stability. arXiv:1512.05660, p. 6 (2015)
  6. 6.
    S. Merlet, Q. Bodart, N. Malossi, A. Landragin, F.P.D. Santos, O. Gitlein, L. Timmen, Comparison between two mobile absolute gravimeters: optical versus atomic interferometers. Metrologia 47, L9–L11 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    P. Gillot, O. Francis, A. Landragin, F. Pereira Dos Santos, S. Merlet, Stability comparison of two absolute gravimeters: optical versus atomic interferometers. Metrologia 51, L15 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C.L.G. Alzar, R. Geiger, S. Merlet, F.P.D. Santos, A. Landragin, Metrology with atom interferometry: inertial sensors from laboratory to field applications. arXiv:1601.06082, p. 7 (2016)
  9. 9.
    A. Peters, K.Y. Chung, S. Chu, Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–852 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    H. Müller, A. Peters, S. Chu, A precision measurement of the gravitational redshift by the interference of matter waves. Nature 463, 926–929 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    D. Schlippert, J. Hartwig, H. Albers, L. Richardson, C. Schubert, A. Roura, W. Schleich, W. Ertmer, E. Rasel, Quantum test of the universality of free fall. Phys. Rev. Lett. 112, 203002 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, M. Zhan, Test of equivalence principle at 10(-8) level by a dual-species double-diffraction raman atom interferometer. Phys. Rev. Lett. 115, 013004 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    H. Müntinga, H. Ahlers, M. Krutzik, A. Wenzlawski, S. Arnold, D. Becker, K. Bongs, H. Dittus, H. Duncker, N. Gaaloul, C. Gherasim, E. Giese, C. Grzeschik, T.W. Hänsch, O. Hellmig, W. Herr, S. Herrmann, E. Kajari, S. Kleinert, C. Lämmerzahl, W. Lewoczko-Adamczyk, J. Malcolm, N. Meyer, R. Nolte, A. Peters, M. Popp, J. Reichel, A. Roura, J. Rudolph, M. Schiemangk, M. Schneider, S.T. Seidel, K. Sengstock, V. Tamma, T. Valenzuela, A. Vogel, R. Walser, T. Wendrich, P. Windpassinger, W. Zeller, T. van Zoest, W. Ertmer, W.P. Schleich, E.M. Rasel, Interferometry with Bose–Einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    S.M. Dickerson, J.M. Hogan, A. Sugarbaker, D.M.S. Johnson, M.A. Kasevich, Multiaxis inertial sensing with long-time point source atom interferometry. Phys. Rev. Lett. 111, 083001 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    J. Hartwig, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, E.M. Rasel, Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer. New J. Phys. 17, 035011 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    D .N. Aguilera, H. Ahlers, B. Battelier, A. Bawamia, A. Bertoldi, R. Bondarescu, K. Bongs, P. Bouyer, C. Braxmaier, L. Cacciapuoti, C. Chaloner, M. Chwalla, W. Ertmer, M. Franz, N. Gaaloul, M. Gehler, D. Gerardi, L. Gesa, N. Gürlebeck, J. Hartwig, M. Hauth, O. Hellmig, W. Herr, S. Herrmann, A. Heske, A. Hinton, P. Ireland, P. Jetzer, U. Johann, M. Krutzik, A. Kubelka, C. Lämmerzahl, A. Landragin, I. Lloro, D. Massonnet, I. Mateos, A. Milke, M. Nofrarias, M. Oswald, A. Peters, K. Posso-Trujillo, E. Rasel, E. Rocco, A. Roura, J. Rudolph, W. Schleich, C. Schubert, T. Schuldt, S. Seidel, K. Sengstock, C .F. Sopuerta, F. Sorrentino, D. Summers, G .M. Tino, C. Trenkel, N. Uzunoglu, W. von Klitzing, R. Walser, T. Wendrich, A. Wenzlawski, P. Weßels, A. Wicht, E. Wille, M. Williams, P. Windpassinger, N. Zahzam, STE-QUEST test of the universality of free fall using cold atom interferometry. Class. Quantum Gravity 31, 115010 (2014)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    P.W. Graham, J.M. Hogan, M.A. Kasevich, S. Rajendran, New method for gravitational wave detection with atomic sensors. Phys. Rev. Lett. 110, 171102 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    N. Yu, J. Kohel, J. Kellogg, L. Maleki, Development of an atom-interferometer gravity gradiometer for gravity measurement from space. Appl. Phys. B 84, 647–652 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    O. Carraz, C. Siemes, L. Massotti, R. Haagmans, P. Silvestrin, A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earths gravity field. Microgravity Sci. Technol. 26, 139–145 (2014)CrossRefGoogle Scholar
  20. 20.
    J.M. Hogan, D.M.S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S.-W. Chiow, P.W. Graham, M.A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B.D. Seery, L. Feinberg, R. Keski-Kuha, An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO). Gen. Relativ. Gravit. 43, 1953–2009 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, P. Bouyer, Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2, 474 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, A. Bresson, Narrow linewidth single laser source system for onboard atom interferometry. Appl. Phys. B 118, 1–5 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    T. Lévèque, L. Antoni-Micollier, B. Faure, J. Berthon, A laser setup for rubidium cooling dedicated to space applications. Appl. Phys. B 116, 997–1004 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    T. Lévèque, B. Faure, F.X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Béraud, J.P. Lelay, S. Thomin, P. Laurent, PHARAO laser source flight model: design and performances. Rev. Sci. Instrum. 86, 033104 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    J. Grosse, S. Seidel, M. Krutzik, M. Scharringhausen, T. van Zoest, Thermal and mechanical design of the MAIUS atom interferometer sounding rocket payload, in AIAA SPACE 2014 Conference and Exposition, SPACE Conferences and Exposition, ESA Communications, okt (2014)Google Scholar
  26. 26.
    A. Garcia, S .S .C. Yamanaka, A .N. Barbosa, F .C .P. Bizarria, W. Jung, F. Scheuerpflug, VSB-30 sounding rocket: history of flight performance. J. Aerosp. Technol. Manag. 3, 325–330 (2011)CrossRefGoogle Scholar
  27. 27.
    J. Rudolph, W. Herr, C. Grzeschik, T. Sternke, A. Grote, M. Popp, D. Becker, H. Müntinga, H. Ahlers, A. Peters, C. Lämmerzahl, K. Sengstock, N. Gaaloul, W. Ertmer, E .M. Rasel, A high-flux BEC source for mobile atom interferometers. New J. Phys. 17, 065001 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    H. Müntinga, H. Ahlers, M. Krutzik, A. Wenzlawski, S. Arnold, D. Becker, K. Bongs, H. Dittus, H. Duncker, N. Gaaloul, C. Gherasim, E. Giese, C. Grzeschik, T.W. Hänsch, O. Hellmig, W. Herr, S. Herrmann, E. Kajari, S. Kleinert, C. Lämmerzahl, W. Lewoczko-Adamczyk, J. Malcolm, N. Meyer, R. Nolte, A. Peters, M. Popp, J. Reichel, A. Roura, J. Rudolph, M. Schiemangk, M. Schneider, S.T. Seidel, K. Sengstock, V. Tamma, T. Valenzuela, A. Vogel, R. Walser, T. Wendrich, P. Windpassinger, W. Zeller, T. van Zoest, W. Ertmer, W.P. Schleich, E.M. Rasel, Interferometry with Bose–Einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    A. Stamminger, J. Ettl, J. Grosse, M. Hörschgen-Eggers, F. Jung, A. Kallenbach, G. Raith, W. Saedtler, S. Seidel, J. Turner, M. Wittkamp, MAIUS-1-vehicle, subsystems design and mission operations, in Proceedings 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research, vol. SP-730 (ESA Communications, 2015), pp. 183–190Google Scholar
  30. 30.
    E. Luvsandamdin, C. Kürbis, M. Schiemangk, A. Sahm, A. Wicht, A. Peters, G. Erbert, G. Tränkle, Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space. Opt. Express 22, 7790–7798 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    H. Duncker, O. Hellmig, A. Wenzlawski, A. Grote, A.J. Rafipoor, M. Rafipoor, K. Sengstock, P. Windpassinger, Ultrastable, Zerodur-based optical benches for quantum gas experiments. Appl. Opt. 53, 4468–4474 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    M. Schiemangk, K. Lampmann, A. Dinkelaker, A. Kohfeldt, M. Krutzik, C. Kürbis, A. Sahm, S. Spießberger, A. Wicht, G. Erbert, G. Tränkle, A. Peters, High-power, micro-integrated diode laser modules at 767 and 780 nm for portable quantum gas experiments. Appl. Opt. 54, 5332–5338 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    P.A. Altin, M.T. Johnsson, V. Negnevitsky, G.R. Dennis, R.P. Anderson, J.E. Debs, S.S. Szigeti, K.S. Hardman, S. Bennetts, G.D. McDonald, L.D. Turner, J.D. Close, N.P. Robins, Precision atomic gravimeter based on Bragg diffraction. New J. Phys. 15, 023009 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel, Bose–Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    O. SE, Quicklook Texus 51. Data provided by OHB SE (2015)Google Scholar
  36. 36.
    M. Lezius et al., Space-born Frequency Comb Metrology, in preparation (2016)Google Scholar
  37. 37.
    I. 16290:2013, Space systems—definition of the technology readiness levels (TRLs) and their criteria of assessment. ISO norm (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • V. Schkolnik
    • 1
    • 5
    Email author
  • O. Hellmig
    • 3
  • A. Wenzlawski
    • 2
  • J. Grosse
    • 4
    • 6
  • A. Kohfeldt
    • 5
  • K. Döringshoff
    • 1
  • A. Wicht
    • 1
    • 5
  • P. Windpassinger
    • 2
  • K. Sengstock
    • 3
  • C. Braxmaier
    • 4
    • 6
  • M. Krutzik
    • 1
  • A. Peters
    • 1
    • 5
  1. 1.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  3. 3.Institut für LaserphysikUniversität HamburgHamburgGermany
  4. 4.Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)Universität BremenBremenGermany
  5. 5.Ferdinand-Braun-Institut, Leibniz-Institut für HöchstfrequenztechnikBerlinGermany
  6. 6.Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institut für RaumfahrtsystemeBremenGermany

Personalised recommendations