Skip to main content
Log in

Non-chain pulsed DF laser with an average power of the order of 100 W

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The design and performance of a closed-cycle repetitively pulsed DF laser are described. The Fitch circuit and thyratron switch are introduced to realize self-sustained volume discharge in SF6–D2 mixtures. The influences of gas parameters and charging voltage on output characteristics of non-chain pulsed DF laser are experimentally investigated. In order to improve the laser power stability over a long period of working time, zeolites with different apertures are used to scrub out the de-excitation particles produced in electric discharge. An average output power of the order of 100 W was obtained at an operating repetition rate of 50 Hz, with amplitude difference in laser pulses <8 %. And under the action of micropore alkaline zeolites, the average power fell by 20 % after the laser continuing working 100 s at repetition frequency of 50 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.Y. Agroskin, B.G. Bravy, Y.A. Chernyshev et al., Aerosol sounding with a lidar system based on a DF laser. Appl. Phys. B 81, 1149–1154 (2005)

    Article  ADS  Google Scholar 

  2. V.I. Lazarenko, S.D. Velikanov, I.N. Pegoev et al., Analysis of DF laser applicability to SO2 remote sensing in the atmosphere. Proc. SPIE 4168, 232–235 (2001)

    Article  ADS  Google Scholar 

  3. K.N. Firsov, M.P. Frolov, E.M. Gavrishchuk et al., Laser on single-crystal ZnSe:Fe2+ with high pulse radiation energy at room temperature. Laser Phys. Lett. 13, 015002 (2016)

    Article  ADS  Google Scholar 

  4. V.V. Apollonov, S.Y. Kazantsev, A.V. Saifulin et al., Discharge characteristics in a nonchain HF(DF) laser. Quantum Electron. 30(6), 483–485 (2000)

    Article  ADS  Google Scholar 

  5. V.V. Apollonov, A.A. Belevtsev, K.N. Firsov et al., Advanced studies on powerful wide-aperture non-chain HF (DF) lasers with a self-sustained volume discharge to initiate chemical reaction. SPIE 5120, 529–541 (2003)

    ADS  Google Scholar 

  6. V.F. Tarasenko, A.N. Panchenko, Efficient discharge-pumped non-chain HF and DF lasers. SPIE 6101, 61011P61011–61011P61019 (2006)

    Google Scholar 

  7. A.N. Panchenko, V.F. Tarasenko, Brief communications on the efficiency of nonchain electric-discharge HF (DF) lasers. Russ. Phys. J. 47(5), 571–573 (2004)

    Article  Google Scholar 

  8. M.R. Harris, A.V. Morris, E.K. Gorton, A closed-cycle, 1 kHz pulse repetition frequency, HF (DF) laser. SPIE 3268, 247–251 (1998)

    ADS  Google Scholar 

  9. S.D. Velikanov, P. Evdokimov, A.F. Zapolsky et al., Pulse periodic HF (DF)-laser of atmospheric pressure with pulse repetition rate up to 2200 Hz. SPIE 7131, 71310V1–71310V7 (2009)

    Google Scholar 

  10. Y.N. Aksenov, V.P. Borisov, V.V. Burtsev et al., A 400-W repetitively pulsed DF laser. Quantum Electron. 31(4), 290–292 (2001)

    Article  ADS  Google Scholar 

  11. K. Huang, A.P. Yi, Y. Tang et al., Discharge pumped non-chain repetitively pulsed HF laser. SPIE. 8796, 879620 (2013)

    ADS  Google Scholar 

  12. L.Y. Ma, S.Q. Zhou, C. Huang et al., Molecular sieve separation of ground state HF molecules in a nonchain HF laser. SPIE 9543, 95431I (2015)

    ADS  Google Scholar 

  13. S.D. Velikanov, A.P. Domazhirov, N.A. Zaretskiy et al., High-power pulse repetitive HF(DF) laser with a solid-state pump generator. Quantum Electron. 45(11), 989–992 (2015)

    Article  ADS  Google Scholar 

  14. P. Ruan, J.J. Xie, L.M. Zhang et al., Computer modeling and experimental study of non-chain pulsed electric-discharge DF laser. Opt. Express 20(27), 28912–28922 (2012)

    Article  ADS  Google Scholar 

  15. P.A. Evdokimov, D.V. Sokolov, Gas-dynamic perturbations in an electric-discharge repetitively pulsed DF laser and the role of He in their suppression. Quantum Electron. 45(11), 1003–1009 (2015)

    Article  ADS  Google Scholar 

  16. C. Szmytkowski, A. Domaracka, P. Mozejko et al., Electron scattering by sulfur tetrafluoride (SF4) molecules. J. Phys. B At. Mol. Opt. Phys. 38, 745–755 (2005)

    Article  ADS  Google Scholar 

  17. X. Zhao, V. Silvia, A.J. Fletcher et al., Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials. J. Phys. Chem. B 110(20), 9947–9955 (2006)

    Article  Google Scholar 

  18. D. Freude, Size, mass and kinetics of molecules, in Molecular Physics, Chap 2. Letter notes. Version October 2004. http://www.uni-leipzig.de/~energy/pdf/freume2.pdf

Download references

Acknowledgments

This work was supported by the International Cooperation Special Fund from the Ministry of Science and Technology, PRC (No. 2011DFR10320), and Innovation Foundation from Chinese Academy of Sciences (No. CXJJ-11-Q80).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qikun Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Q., Xie, J., Wang, C. et al. Non-chain pulsed DF laser with an average power of the order of 100 W. Appl. Phys. B 122, 200 (2016). https://doi.org/10.1007/s00340-016-6475-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6475-z

Keywords

Navigation