Applied Physics B

, 122:188 | Cite as

High-sensitivity in situ QCLAS-based ammonia concentration sensor for high-temperature applications

  • W. Y. Peng
  • R. Sur
  • C. L. Strand
  • R. M. Spearrin
  • J. B. Jeffries
  • R. K. Hanson


A novel quantum cascade laser (QCL) absorption sensor is presented for high-sensitivity in situ measurements of ammonia (\(\hbox {NH}_3\)) in high-temperature environments, using scanned wavelength modulation spectroscopy (WMS) with first-harmonic-normalized second-harmonic detection (scanned WMS-2f/1f) to neutralize the effect of non-absorption losses in the harsh environment. The sensor utilized the sQ(9,9) transition of the fundamental symmetric stretch band of \(\hbox {NH}_3\) at \(10.39\,{\upmu }\hbox {m}\) and was sinusoidally modulated at 10 kHz and scanned across the peak of the absorption feature at 50 Hz, leading to a detection bandwidth of 100 Hz. A novel technique was used to select an optimal WMS modulation depth parameter that reduced the sensor’s sensitivity to spectral interference from \(\hbox {H}_2\hbox {O}\) and \(\hbox {CO}_2\) without significantly sacrificing signal-to-noise ratio. The sensor performance was validated by measuring known concentrations of \(\hbox {NH}_3\) in a flowing gas cell. The sensor was then demonstrated in a laboratory-scale methane-air burner seeded with \(\hbox {NH}_3\), achieving a demonstrated detection limit of 2.8 ± 0.26 ppm \(\hbox {NH}_3\) by mole at a path length of 179 cm, equivalence ratio of 0.6, pressure of 1 atm, and temperatures of up to 600 K.


Selective Catalytic Reduction Equivalence Ratio Quantum Cascade Laser Spectral Interference Injection Flow Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Shelef, Chem. Rev. 95(1), 209–225 (1995)CrossRefGoogle Scholar
  2. 2.
    D.C. Mussatti, Technical report (2002)Google Scholar
  3. 3.
    K.A. Hossain, M.N. Mohd-Jaafar, K.B. Appalanidu, F.N. Ani, Environ. Technol. 26(3), 251–260 (2005)CrossRefGoogle Scholar
  4. 4.
    R.K. Hanson, Proc. Combust. Inst. 33(1), 1–40 (2011)CrossRefGoogle Scholar
  5. 5.
    M.E. Webber, D.S. Baer, R.K. Hanson, Appl. Opt. 40(12), 2031–2042 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    X. Chao, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 34(2), 3583–3592 (2013)CrossRefGoogle Scholar
  7. 7.
    F. Stritzke, O. Diemel, S. Wagner, Appl. Phys. B Lasers Opt. 119(1), 143–152 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    R. Lewicki, A. Kosterev, D.M. Thomazy, L. Gong, R. Griffin, F. Tittel, in Laser Applications to Chemical, Security and Environmental Analysis (Optical Society of America, 2010)Google Scholar
  9. 9.
    D.J. Miller, K. Sun, L. Tao, M.A. Khan, M.A. Zondlo, Atmos. Meas. Tech. 7(1), 81–93 (2014)CrossRefGoogle Scholar
  10. 10.
    J.D. Whitehead, I.D. Longley, M.W. Gallagher, Water Air Soil Pollut. 183(1–4), 317–329 (2007)CrossRefGoogle Scholar
  11. 11.
    K. Owen, A. Farooq, Appl. Phys. B 116(2), 371–383 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Y.A. Bakhirkin, A.A. Kosterev, G. Wysocki, F.K. Tittel, T.H. Risby, J.D. Bruno, in Laser Applications to Chemical, Security and Environmental Analysis (Optical Society of America, 2008)Google Scholar
  13. 13.
    J. Manne, O. Sukhorukov, W. Jäger, J. Tulip, Appl. Opt. 45(36), 9230–9237 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    J.A. Silver, D.S. Bomse, A.C. Stanton, Appl. Opt. 30(12), 1505–1511 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    R. Sur, R.M. Spearrin, W.Y. Peng, C.L. Strand, J.B. Jeffries, G.M. Enns, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 175, 90–99 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    U. Platt, J. Stutz, in Differential Optical Absorption Spectroscopy (Springer, Berlin, Heidelberg, 2008)Google Scholar
  17. 17.
    P. Kluczynski, O. Axner, Appl. Opt. 38(27), 5803–5815 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, in Spectroscopy and Optical Diagnostics for Gases, 1st edn. (Springer, New York, 2015)Google Scholar
  19. 19.
    D.S. Bomse, A.C. Stanton, J.A. Silver, Appl. Opt. 31(6), 718–731 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    J. Reid, D. Labrie, Appl. Phys. B 26(3), 203–210 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48(29), 5546–5560 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    C.S. Goldenstein, C.L. Strand, I.A. Schultz, K. Sun, J.B. Jeffries, R.K. Hanson, Appl. Opt. 53(3), 356–367 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    K. Sun, X. Chao, R. Sur, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 24(12), 125203 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.a Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, aV Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    L. Rothman, I. Gordon, R. Barber, H. Dothe, R. Gamache, A. Goldman, V. Perevalov, S. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    M.B. Filho, M.G. da Silva, M.S. Sthel, D.U. Schramm, H. Vargas, A. Miklós, P. Hess, Appl. Opt. 45(20), 4966–4971 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    J. Manne, W. Jäger, J. Tulip, Appl. Phys. B Lasers Opt. 94(2), 337–344 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    T. Demayo, M. Miyasato, G. Samuelsen, Symp. Int. Combust. 27(1), 1283–1291 (1998)CrossRefGoogle Scholar
  29. 29.
    P.E. Yelvington, S.C. Herndon, J.C. Wormhoudt, J.T. Jayne, R.C. Miake-Lye, W.B. Knighton, C. Wey, J. Propuls. Power 23(5), 912–918 (2007)CrossRefGoogle Scholar
  30. 30.
    R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, Appl. Phys. B Lasers Opt. 115(1), 9–24 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    R. Kee, F. Rupley, J. Miller, Technical report, sep (1989)Google Scholar
  32. 32.
    H. Ku, J. Res. Natl. Bur. Stand. Sect. C Eng. Instrum. 70C(4), 263–273 (1966)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.High Temperature Gasdynamics Laboratory, 452 Escondido Mall, Bldg. 520, Thermosciences DivisionStanford UniversityStanfordUSA

Personalised recommendations