Applied Physics B

, 122:194 | Cite as

Open-path cavity ring-down spectroscopy sensor for atmospheric ammonia

  • Soran Shadman
  • Charles Rose
  • Azer P. YalinEmail author


An open-path cavity ring-down spectroscopy (CRDS) sensor has been developed for measurement of atmospheric ammonia (NH3) and represents the first use of open-path CRDS in the mid-infrared region. The sensor uses a continuous-wave distributed feedback quantum cascade laser at 10.33 μm to target strong absorption features. The optical cavity is constructed with two high-reflectivity mirrors (R = 0.9995). The open-path configuration removes inlet effects, which are very challenging for closed-path instruments, and can be enabling for compact, low-power designs. Sensor performance was validated in the laboratory by measuring known concentrations in a closed-path configuration. The open-path configuration was validated by comparison against a commercial closed-path CRDS instrument for outdoor measurements at a small feed lot. Ammonia concentrations from the two instruments showed good agreement with slope of 0.990 (R 2 = 0.92), for 5-min averages. The precision of the open-path instrument was found from Allan variance studies as 1.2 ppb (2-σ) for 3-s measurement durations.


Quantum Cascade Laser Differential Optical Absorption Spectroscopy Wavelength Modulation Spectroscopy Trigger Circuit Optical Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge funding from the National Robotics Initiative via USDA-NIFA Award 2012-67021-19978 and from the USDA Award 2016-67021-24456. The authors also acknowledge assistance from Kira Shonkwiler and Jay Ham for the use and operation of the commercial ring-down sensor, and Kevin Kirkham for the loan and donation of a mid-infrared beam profiler.


  1. 1.
    P. Warneck, Chemistry of the Natural Atmosphere (Academic, New York, 1999)Google Scholar
  2. 2.
    V.P. Aneja, B. Bunton, J.T. Walker, B.P. Malik, Atmos. Environ. 35, 11 (2001)Google Scholar
  3. 3.
    A. Fangmeierfl, A.H. Ludger, V. Der Eerden, J. Hans-Jurgen, Environ. Pollut. 86, 1 (1994)CrossRefGoogle Scholar
  4. 4.
    M.A. Sutton, D. Fowler, J.K. Burkhardet, C. Milford, Water. Air Soil Pollution 85, 4 (1995)CrossRefGoogle Scholar
  5. 5.
    B. Brunekreef, S.T. Holgate, Lancet 360, 1233–1242 (2002)CrossRefGoogle Scholar
  6. 6.
    L. Clarisse, C. Clerbaux, F. Dentener, D. Hurtmans, P. Coheur, Nat. Geosci. 2, 7 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Radojević, R.M. Harrison, (Elsevier, London 1992)Google Scholar
  8. 8.
    M.A. Sutton, W.A.H. Asman, J.K. Schjorring, Tellus B, 46, 255–273 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    B. Timmer, W. Olthuis, A. Van den Berg, Sens Actuators B 107, 2 (2005)CrossRefGoogle Scholar
  10. 10.
    Z.Y. Meng, W.L. Lin, X.M. Jiang, P. Yan, Y. Wang, Y.M. Zhang, X.F. Jia, X.L. Yu, Atmos. Chem. Phys. 11, 12 (2011)CrossRefGoogle Scholar
  11. 11.
    G.H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, K. Johnson, R. Kincaid, Atmos. Environ. 36, 1799–1810 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    J.E. Pleim, J.O. Bash, J.T. Walker, E.J. Cooter, J. Geophys. Res. Atmos. 118, 3794–3806 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    S.M. McGinn, H.H. Janzen, T.W. Coates, K.A. Beauchemin, T.K. Flesch, J. Environ. Qual. (2016). doi: 10.2134/jeq2016.01.0009 Google Scholar
  14. 14.
    J. Sintermann, C. Spirig, A. Jordan, U. Kuhn, C. Ammann, A. Neftel, Atmos. Meas. Tech. 4(3), 599–616 (2011)CrossRefGoogle Scholar
  15. 15.
    R.M. Staebler, S.M. McGinn, B.P. Crenna, T.K. Flesch, K.L. Hayden, S.M. Li, Atmos. Environ. 43, 38 (2009)CrossRefGoogle Scholar
  16. 16.
    T.A. Foster-Wittig, E.D. Thoma, J.D. Albertson, Atmos. Environ. 115, 101–109 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    K.A. Baum, J.M. Ham, Atmos. Environ. 43, 10 (2009)CrossRefGoogle Scholar
  18. 18.
    D.R. Benson, A. Markovich, M. Al-Refai, S.-H. Lee, Atmos. Meas. Tech. 3, 1075–1087 (2010)CrossRefGoogle Scholar
  19. 19.
    J.B. Nowak, J.A. Neuman, K. Kozai, L.G. Huey, D.J. Tanner, J.S. Holloway, T.B. Ryerson, G.J. Frost, S.A. McKeen, F.C. Fehsenfeld, J. Geophys. Res. 112, D10S02 (2007)Google Scholar
  20. 20.
    J.B. Mcmanus, D.D. Nelson, J. Shorter, M. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, J. Faist, Diode Lasers Appl. Atmos. Sens. 4817, 22–33 (2000)CrossRefGoogle Scholar
  21. 21.
    L. Gong, R. Lewicki, R.J. Griffin, J.H. Flynn, B.L. Lefer, F.K. Tittel, Atmos. Chem. Phys. 11, 9721–9733 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    J.B. Leen, X. Yu, M. Gupta, D.S. Baer, J.M. Hubbe, C.D. Kluzek, J.M. Tomlinson, M.R. Hubbell, Environ. Sci. Technol. 47, 10446–10453 (2013)Google Scholar
  23. 23.
    R.A. Ellis, J.G. Murphy, E. Pattey, R. Van Haarlem, J.M.O. Brien, S.C. Herndon, Atmos. Meas. Technol. 3, 397–406 (2010)CrossRefGoogle Scholar
  24. 24.
    J. Manne, O. Sukhorukov, W. Jäger, J. Tulip, Appl. Opt. 45, 9230–9237 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    B. Galle, L. Klemedtsson, K. Bergqvist, M. Ferm, D.W.T. Gri, N. Jensen, F. Hansen, Atmos. Environ. 34, 4907–4915 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    H. Volten, J.B. Bergwerff, M. Haaima, D.E. Lolkema, A.J.C. Berkhout, G.R. van der Hoff, C.J.M. Potma, R.J. Wichink Kruit, W.A.J. van Pul, D.P.J. Swart, Atmos. Meas. Tech. 5(2), 413–427 (2012)CrossRefGoogle Scholar
  27. 27.
    D.J. Miller, K. Sun, L. Tao, M.A. Khan, M.A. Zondlo, Atmos. Meas. Tech. 7(1), 81–93 (2014)CrossRefGoogle Scholar
  28. 28.
    K. Sun, L. Tao, D.J. Miller, M.A. Zondlo, K.B. Shonkwiler, C. Nash, J.M. Ham, Agric. For. Meteorol. 213, 193–202 (2015)CrossRefGoogle Scholar
  29. 29.
    G. Gagliardi, H. Loock, Cavity-Enhanced Spectroscopy and Sensing (Academic Express, San diego, 2014)CrossRefGoogle Scholar
  30. 30.
    R. Peeters, G. Berden, A. Apituley, G. Meijer, Appl. Phys. B 236, 231–236 (2000)ADSGoogle Scholar
  31. 31.
    M.A. Busch, K.W. Busch, Cavity-Ringdown Spectroscopy (American Chemical Society, Washington, 1999)CrossRefGoogle Scholar
  32. 32.
    Y. He, C. Jin, R. Kan, J. Liu, W. Liu, J. Hill, I.M. Jamie, B.J. Orr, Opt. Express 22, 11 (2014)Google Scholar
  33. 33.
    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Miller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc, Radiat. Transf. 130, 4–50 (2013)Google Scholar
  34. 34.
    S. Schilt, L. Thevenaz, Appl. Opt. 42, 33 (2003)CrossRefGoogle Scholar
  35. 35.
    H. Kogelnik, T. Li, Proc. IEEE 54, 10 (1966)CrossRefGoogle Scholar
  36. 36.
    C. L. Hagen, B. C. Lee, I. S. Franka, J. L. Rath, T. C. VandenBoer, J. M. Roberts, S. S. Brown, A. P. Yalin, Atmos. Meas. Tech. 7, 345–357 (2014)CrossRefGoogle Scholar
  37. 37.
    J.B. Dudek, P.B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K.K. Lehmann, Anal. Chem. 75(17), 4599–4605 (2003)CrossRefGoogle Scholar
  38. 38.
    B.A. Paldus, C.C. Harb, T.G. Spence, R.N. Zare, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Opt. Lett. 25, 9 (2000)CrossRefGoogle Scholar
  39. 39.
    R. Centeno, J. Mandon, S.M. Cristescu, F.J.M. Harren, Sens. Actuators B Chem. 203, 311–319 (2014)CrossRefGoogle Scholar
  40. 40.
    F.M. Schmidt, O. Vaittinen, M. Metsälä, M. Lehto, C. Forsblom, P.-H. Groop, L. Halonen, J. Breath Res. 7, 1 (2013)CrossRefGoogle Scholar
  41. 41.
    L.E. McHale, A. Hecobian, A.P. Yalin, Opt. Express 24, 5 (2016)CrossRefGoogle Scholar
  42. 42.
    A. Pettersson, E.R. Lovejoy, C.A. Brock, S.S. Brown, A.R. Ravishankara, J. Aerosol Sci. 35, 8 (2004)CrossRefGoogle Scholar
  43. 43.
    P. Kopke, M. Hess, I. Schult, E.P. Shettle, Max-Planck-Institute for Meteorologie, Report No. 243 (1997)Google Scholar
  44. 44.
    H. Huang, K.K.K. Lehmann, Appl. Opt. 49, 8 (2010)CrossRefGoogle Scholar
  45. 45.
    P. Zalicki, R.N. Zare, J. Chem. Phys. 102(7), 2708 (1995)ADSCrossRefGoogle Scholar
  46. 46.
    R.D. Van Zee, J.T. Hodges, J.P. Looney, Appl. Opt. 38, 18 (1999)CrossRefGoogle Scholar
  47. 47.
    P. Werle, R. Miicke, F. Slemr, Appl. Phys. B Photophys. Laser Chem. 57, 2 (1993)CrossRefGoogle Scholar
  48. 48.
    M.C. Phillips, M.S. Taubman, B.E. Bernacki, B.D. Cannon, R.D. Stahl, J.T. Schiffern, T.L. Myers, Analyst 139(9), 2047–2056 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    A. Khan, D. Schaefer, L. Tao, D.J. Miller, K. Sun, M.A. Zondlo, W.A. Harrison, B. Roscoe, D.J. Lary, Remote Sens. 4, 5 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations