Advertisement

Applied Physics B

, 122:177 | Cite as

Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers

  • O. Mouawad
  • S. Kedenburg
  • T. Steinle
  • A. Steinmann
  • B. Kibler
  • F. Désévédavy
  • G. Gadret
  • J-C Jules
  • H. Giessen
  • F. SmektalaEmail author
Article

Abstract

The evolution of supercontinuum generation in chalcogenide suspended-core microstructured optical fibers is studied with regard to their exposure to the room atmosphere. We report the experimental proof of aging-induced supercontinuum generation drift in chalcogenide microstructured fibers. Mid-infrared supercontinuum covering the 2.5–5.5-µm spectral region is demonstrated in a fresh and 7-month-aged counterpart As2S3 fibers, by means of a home-built multistage oscillator power amplifier delivering 300 fs pulses at a repetition rate of 43 MHz in the 3.0–4.1-µm range. Numerical simulations based on the generalized nonlinear Schrödinger equation confirm the significant alteration of supercontinuum generation due to increasing fundamental OH and SH absorption bands.

Keywords

Soliton Chalcogenide Glass Pump Wavelength Raman Gain Supercontinuum Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge the financial support from the Conseil Régional de Bourgogne and the FEDER European program through the Photcom PARI program. This project has been performed in cooperation with the Labex Action program (contract ANR-11-LABX-0001-01).

References

  1. 1.
    M.L. Naudeau, R.J. Law, T.S. Luk, T.R. Nelson, S.M. Cameron, J.V. Rudd, Opt. Express 14, 6194–6200 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    R.R. Gattass, L.B. Shaw, V.Q. Nguyen, P.C. Pureza, I.D. Aggarwal, J.S. Sanghera, Opt. Fiber Technol. 18, 345–348 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    D.D. Hudson, M. Baudisch, D. Werdehausen, B.J. Eggleton, J. Biegert, Opt. Lett. 39, 5752–5755 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.C. Jules, D. Deng, Y. Ohishi, F. Smektala, Opt. Lett. 39, 2684–2687 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    C.R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang, Nat. Photonics 8, 830–834 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    F. Théberge, N. Thiré, J.-F. Daigle, P. Mathieu, B.E. Schmidt, Y. Messaddeq, R. Vallée, F. Légaré, Opt. Lett. 39, 6474–6477 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    U. Møller, Y. Yu, I. Kubat, C.R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, O. Bang, Opt. Express 23, 3282–3291 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, B. Luther-Davies, Opt. Lett. 40, 1081–1084 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    T.M. Monro, H. Ebendorff-Heidepriem, Annu. Rev. Mater. Res. 36, 467–495 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    W. Gao, Z. Duan, K. Asano, T. Cheng, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, Y. Ohishi, J. Appl. Phys B 116, 847–853 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    I. Savelli, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.C. Jules, P.Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, F. Smektala, Opt. Express 20, 27083–27093 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S.J. Madden, B. Luther-Davies, Laser Photon. Rev. 8, 792–798 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Al-kadry, C. Baker, M. El Amraoui, Y. Messaddeq, M. Rochette, Opt. Lett. 38, 1185–1187 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    S. Shabahang, G. Tao, J.J. Kaufman, A.F. Abouraddy, J. Opt. Soc. Am. B 30, 2498–2506 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    C.W. Rudy, A. Marandi, K.L. Vodopyanov, R.L. Byer, Opt. Lett. 38, 2865–2868 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    V. Kokorina, Glasses for Infrared Optics (The CRC Press, Boca Raton, 1996)Google Scholar
  17. 17.
    Y.D. West, T. Schweizer, D.J. Brady, D.W. Hewak, Fiber Integr. Opt. J. 19, 229–250 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    A.A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, P. Lucas, Adv. Mater. 19, 3796–3800 (2007)CrossRefGoogle Scholar
  19. 19.
    J.S. Sanghera, L.B. Shaw, I.D. Aggarwal, IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009)CrossRefGoogle Scholar
  20. 20.
    D.W. Hewak, D. Brady, R.J. Curry, G. Elliott, C.C. Huang, M. Hughes, K. Knight, A. Mairaj, M.N. Petrovich, R.E. Simpson, in Chalcogenide Glasses for Photonics Device Applications (Research Signpost, 2010)Google Scholar
  21. 21.
    S. Cui, C. Boussard-Plédel, J. Lucas, B. Bureau, Opt. Express 22, 21253–21262 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    O. Mouawad, C. Strutynski, J. Picot-Clémente, F. Désévédavy, G. Gadret, J.C. Jules, F. Smektala, Opt. Mater. Express 4, 2190–2203 (2014)CrossRefGoogle Scholar
  23. 23.
    O. Mouawad, P. Vitry, C. Strutynski, J. Picot-Clémente, F. Désévédavy, G. Gadret, J.C. Jules, E. Lesniewska, F. Smektala, Opt. Mater. 44, 25–32 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    M.F. Churbanov, V.S. Shiryaev, V.V. Gerasimenko, A.A. Pushkin, I.V. Skripachev, G.E. Snopatin, V.G. Plotnichenko, Inorg. Mater. 38, 1063–1068 (2002)CrossRefGoogle Scholar
  25. 25.
    O. Mouawad, F. Amrani, B. Kibler, J. Picot-Clémente, C. Strutynski, J. Fatome, F. Désévédavy, G. Gadret, J.C. Jules, O. Heintz, E. Lesniewska, F. Smektala, Opt. Express 22, 23912–23919 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    P. Toupin, L. Brilland, D. Mechin, J. Adam, J. Troles, J. Lightwave Technol. 32, 2428–2432 (2014)CrossRefGoogle Scholar
  27. 27.
    I.G. Sanchez, Fabrication and Applications of low OH Photonic Crystal Fibers. in Department of Physics (University of Bath, Bath, 2012), p. 131Google Scholar
  28. 28.
    G.E. Snopatin, V.S. Shiryaev, V.G. Plotnichenko, E.M. Dianov, M.F. Churbanov, Inorg. Mater. 45, 1439–1460 (2009)CrossRefGoogle Scholar
  29. 29.
    T. Steinle, F. Neubrech, A. Steinmann, X. Yin, H. Giessen, Opt. Express 23, 11105–11113 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    F. Mörz, T. Steinle, A. Steinmann, H. Giessen, Opt. Express 23, 23960–23967 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    J.M. Dudley, J.R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, Cambridge, 2010)CrossRefGoogle Scholar
  32. 32.
    R.J. Kobliska, S.A. Solin, Phys. Rev. B 8, 756–768 (1973)ADSCrossRefGoogle Scholar
  33. 33.
    R. Stegeman, G. Stegeman, P. Delfyett Jr., L. Petit, N. Carlie, K. Richardson, M. Couzi, Opt. Express 14, 11702–11708 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    V.G. Ta’eed, N.J. Baker, L. Fu, K. Finsterbusch, M.R.E. Lamont, D.J. Moss, H.C. Nguyen, B.J. Eggleton, D.Y. Choi, S. Madden, B. Luther-Davies, Opt. Express 15, 9205–9221 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    S. Kedenburg, T. Steinle, F. Morz, A. Steinmann, H. Giessen, Opt. Lett. 40, 2668–2671 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • O. Mouawad
    • 1
  • S. Kedenburg
    • 2
  • T. Steinle
    • 2
  • A. Steinmann
    • 2
  • B. Kibler
    • 1
  • F. Désévédavy
    • 1
  • G. Gadret
    • 1
  • J-C Jules
    • 1
  • H. Giessen
    • 2
  • F. Smektala
    • 1
    Email author
  1. 1.Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-ComtéDijonFrance
  2. 2.4th Physics Institute and Research Center SCOPEUniversity of StuttgartStuttgartGermany

Personalised recommendations