Advertisement

Applied Physics B

, 122:155 | Cite as

Plasmonic electric near-field enhancement in self-organized gold nanoparticles in macroscopic arrays

  • V. Mondes
  • E. Antonsson
  • J. Plenge
  • C. Raschpichler
  • I. Halfpap
  • A. Menski
  • C. Graf
  • M. F. Kling
  • E. RühlEmail author
Article
Part of the following topical collections:
  1. Ultrafast Nanooptics

Abstract

When plasmonic nanoparticles are incorporated into nanostructures and they are exposed to external optical fields, plasmonic coupling causes electric near-field enhancement which is significantly larger than that of isolated nanoparticles. We report on the plasmonic coupling in arrays of gold nanospheres (20 ± 3 and 50 ± 4 nm) prepared by colloidal chemistry and self-organization. This yields field enhancement in arrays with areas of several mm2 and provides an alternative approach to lithographic methods for preparation of nanostructures for plasmonic applications. Gold nanospheres are surface-functionalized by organic ligands, which define the interparticle distance in the array upon self-organization of the nanoparticles. The experiments are accompanied by finite-difference time-domain simulations, which quantify the dependence of the field enhancement on the interparticle distance.

Keywords

Field Enhancement Interparticle Distance High Harmonic Generation Plasmonic Coupling Gold Nanospheres 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support by Deutsche Forschungsgemeinschaft (DFG) within Priority Program 1391/2 is gratefully acknowledged. M.F.K. is grateful for support by the European Union (EU) through the European Research Council (ERC) grant ATTOCO (no. 300372).

References

  1. 1.
    M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photonics 6, 737–748 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    N.J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011)CrossRefGoogle Scholar
  3. 3.
    X. Wang, P. Gogol, E. Cambril, B. Palpant, Near- and far-field effects on the plasmon coupling in gold nanoparticle arrays. J. Phys. Chem. C 116, 24741–24747 (2012)CrossRefGoogle Scholar
  4. 4.
    P.K. Jain, M.A. El-Sayed, Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 487, 153–164 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    H. Chen, G. Wei, A. Ispas, S.G. Hickey, A. Eychmüller, Synthesis of palladium nanoparticles and their applications for surface-enhanced Raman scattering and electrocatalysis. J. Phys. Chem. C 114, 21976–21981 (2010)CrossRefGoogle Scholar
  6. 6.
    G.C. Schatz, Theoretical studies of surface enhanced Raman scattering. Acc. Chem. Res. 17, 370–376 (1984)CrossRefGoogle Scholar
  7. 7.
    E. Hao, G.C. Schatz, Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)CrossRefGoogle Scholar
  9. 9.
    S. Kühn, U. Håkansson, L. Rogobete, V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    S.-Q. Zhu, T. Zhang, X.-L. Guo, X.-Y. Zhang, Self-assembly of large-scale gold nanoparticle arrays and their application in SERS. Nanoscale Res. Lett. 9, 114 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    I.H. El-Sayed, X. Huang, M.A. El-Sayed, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5, 829–834 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    P. Mühlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308, 1607–1609 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90, 013903 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    G.F. Walsh, L. Dal, Negro, Enhanced second harmonic generation by photonic–plasmonic Fano-type coupling in nanoplasmonic arrays. Nano Lett. 13, 3111–3117 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    M. Lippitz, M.A. van Dijk, M. Orrit, Third-harmonic generation from single gold nanoparticles. Nano Lett. 5, 799–802 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    M. Sivis, M. Duwe, B. Abel, C. Ropers, Extreme-ultraviolet light generation in plasmonic nanostructures. Nat. Phys. 9, 304–309 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    G.F. Walsh, L. Dal, Negro, Engineering plasmon-enhanced Au light emission with planar arrays of nanoparticles. Nano Lett. 13, 786–792 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    F. Caruso, Colloids and Colloid Assemblies (Wiley-VCH, Weinheim, 2003)CrossRefGoogle Scholar
  21. 21.
    Y.-J. Li, W.-J. Huang, S.-G. Sun, A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface. Angew. Chem. Int. Ed. 45, 2537–2539 (2006)CrossRefGoogle Scholar
  22. 22.
    W. Huang, W. Qian, M.A. El-Sayed, Coherent vibrational oscillation in gold prismatic monolayer periodic nanoparticle arrays. Nano Lett. 4, 1741–1747 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    W. Dong, H. Dong, Z. Wang, P. Zhan, Z. Yu, X. Zhao, Y. Zhu, N. Ming, Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating. Adv. Mater. 18, 755–759 (2006)CrossRefGoogle Scholar
  24. 24.
    M.A. Mangold, C. Weiss, M. Calame, A.W. Holleitner, Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers. Appl. Phys. Lett. 94, 161104 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    B. Cui, L. Clime, K. Li, T. Veres, Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy. Nanotechnology 19, 145302 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    J. Henzie, K.L. Shuford, E.-S. Kwak, G.C. Schatz, T.W. Odom, Manipulating the optical properties of pyramidal nanoparticle arrays. J. Phys. Chem. B 110, 14028–14031 (2006)CrossRefGoogle Scholar
  28. 28.
    A. Sundaramurthy, P.J. Schuck, N.R. Conley, D.P. Fromm, G.S. Kino, W.E. Moerner, Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett. 6, 355–360 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    C. Aciknoz, M.A. Hempenius, J. Huskens, G.J. Vansco, Polymers in conventional and alternative lithography for the fabrication of nanostructures. Eur. Polym. J. 47, 2033–2052 (2011)CrossRefGoogle Scholar
  30. 30.
    N.G. Khlebtsov, L.A. Dykman, Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 111, 1–35 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Z. Nie, D. Fava, M. Rubinstein, E. Kumacheva, “Supramolecular” assembly of gold nanorods end-terminated with polymer “pom-poms”: effect of pom-pom structure on the association modes. J. Am. Chem. Soc. 130, 3683–3689 (2008)CrossRefGoogle Scholar
  32. 32.
    T.S. Sreeprasad, A.K. Samal, T. Pradeep, One-, two-, and three-dimensional superstructures of gold nanorods induced by dimercaptosuccinic acid. Langmuir 24, 4589–4599 (2008)CrossRefGoogle Scholar
  33. 33.
    C. Graf, S. Dembski, A. Hofmann, E. Rühl, A general method for the controlled embedding of nanoparticles in silica colloids. Langmuir 22, 5604–5610 (2006)CrossRefGoogle Scholar
  34. 34.
    A. Hofmann, C. Graf, C. Boeglin, E. Rühl, Magnetic and structural investigation of Mn2+-doped ZnSe semiconductor nanoparticles. ChemPhysChem 8, 2008–2012 (2007)CrossRefGoogle Scholar
  35. 35.
    S. Dembski, C. Graf, T. Krüger, U. Gbureck, A. Ewald, A. Bock, E. Rühl, Photoactivation of CdSe/ZnS quantum dots embedded in silica colloids. Small 4, 1516–1526 (2008)CrossRefGoogle Scholar
  36. 36.
    C. Graf, A. Hofmann, T. Ackermann, C. Boeglin, R. Viswanatha, X. Peng, A.F. Rodriguez, F. Nolting, E. Rühl, Magnetic and structural investigation of ZnSe semiconductor nanoparticles doped with isolated and core-concentrated Mn2+ ions. Adv. Funct. Mater. 19, 2501–2510 (2009)CrossRefGoogle Scholar
  37. 37.
    S. Perumal, A. Hofmann, N. Scholz, E. Rühl, C. Graf, Kinetics study of the binding of multivalent ligands on size-selected gold nanoparticles. Langmuir 27, 4456–4464 (2011)CrossRefGoogle Scholar
  38. 38.
    N.C. Bigall, A. Eychmüller, Synthesis of noble metal nanoparticles and their non-ordered superstructures. Philos. Trans. R. Soc. A 368, 1385–1404 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    L.M. Liz-Marzan, M. Giersig, P. Mulvaney, Synthesis of nanosized gold-silica core-shell particles. Langmuir 12, 4329–4335 (1996)CrossRefGoogle Scholar
  40. 40.
    C. Graf, D.L.J. Vossen, A. Imhof, A. van Blaaderen, A general method to coat colloidal particles with silica. Langmuir 19, 6693–6700 (2003)CrossRefGoogle Scholar
  41. 41.
    X. Lu, L. Au, J. McLellan, Z.-Y. Li, M. Marquez, Y. Xia, Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 7, 1764–1769 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    R. Jin, Y. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    N.R. Jana, L. Gearheart, C.J. Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065–4067 (2001)CrossRefGoogle Scholar
  44. 44.
    B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003)CrossRefGoogle Scholar
  45. 45.
    G. Lee, Y.-S. Cho, S. Park, G.-R. Yi, Synthesis and assembly of anisotropic nanoparticles. Korean J. Chem. Eng. 28, 1641–1650 (2011)CrossRefGoogle Scholar
  46. 46.
    A. Dubavik, V. Lesnyak, N. Gaponik, A. Eychmüller, One-phase synthesis of gold nanoparticles with varied solubility. Langmuir 27, 10224–10227 (2011)CrossRefGoogle Scholar
  47. 47.
    C. Graf, A. van Blaaderen, Metallodielectric colloidal core-shell particles for photonic applications. Langmuir 18, 524–534 (2002)CrossRefGoogle Scholar
  48. 48.
    S.H. Im, Y.T. Lee, B. Wiley, Y. Xia, Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed. 44, 2154–2157 (2005)CrossRefGoogle Scholar
  49. 49.
    J. Ren, R.D. Tilley, Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes. J. Am. Chem. Soc. 129, 3287–3291 (2007)CrossRefGoogle Scholar
  50. 50.
    L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett. 6, 2060–2065 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    S. Roorda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen, B.J. Kooi, Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles. Adv. Mater. 16, 235–237 (2004)CrossRefGoogle Scholar
  52. 52.
    J. Liao, L. Bernard, M. Langer, C. Schönenberger, M. Calame, Reversible formation of molecular junctions in 2D nanoparticle arrays. Adv. Mater. 18, 2444–2447 (2006)CrossRefGoogle Scholar
  53. 53.
    J. Liao, S. Blok, S.J. van der Molen, S. Diefenbach, A.W. Holleitner, C. Schönenberger, A. Vladyka, M. Calame, Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties. Chem. Soc. Rev. 44, 999–1014 (2015)CrossRefGoogle Scholar
  54. 54.
    T.K. Sau, C.J. Murphy, Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 21, 2923–2929 (2005)CrossRefGoogle Scholar
  55. 55.
    S. Diefenbach, N. Erhard, J. Schopka, A. Martin, C. Karnetzky, D. Iacopino, A.W. Holleitner, Polarization dependent, surface plasmon induced photoconductance in gold nanorod arrays. Phys. Status solidi (RRL) 8, 264–268 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    R. Kodiyath, S.T. Malak, Z.A. Combs, T. König, M.A. Mahmoud, M.A. El-Sayed, V.V. Tsukruk, Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection. J. Mat. Chem. A 1, 2777–2788 (2013)CrossRefGoogle Scholar
  57. 57.
    F. Le, D.W. Brandl, Y.A. Urzhumov, H. Wang, J. Kundu, N.J. Halas, J. Aizpurua, P. Nordlander, Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2, 707–718 (2008)CrossRefGoogle Scholar
  58. 58.
    M.B. Raschke, High-harmonic generation with plasmonics: feasible or unphysical? Ann. Phys. 525, A40–A42 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    M. Sivis, M. Duwe, B. Abel, C. Ropers, Nanostructure-enhanced atomic line emission. Nature 485, E1–E2 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    Y.-Y. Yang, A. Scrinzi, A. Husakou, Q.-G. Li, S.L. Stebbings, F. Süßmann, H.-J. Yu, S. Kim, E. Rühl, J. Herrmann, X.-C. Lin, M.F. Kling, High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses. Opt. Express 21, 2195–2205 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    J. Plenge, A. Wirsing, I. Wagner-Drebenstedt, I. Halfpap, B. Kieling, B. Wassermann, E. Rühl, Coherent control of the ultrafast dissociative ionization dynamics of bromochloroalkanes. Phys. Chem. Chem. Phys. 13, 8705–8714 (2011)CrossRefGoogle Scholar
  62. 62.
    E. Antonsson, C. Peltz, J. Plenge, B. Langer, T. Fennel, E. Rühl, Signatures of transient resonance heating in photoemission from free NaCl nanoparticles in intense femtosecond laser pulses. J. Electron Spectrosc. Relat. Phenom. 200, 216–221 (2015)CrossRefGoogle Scholar
  63. 63.
    E.Y. Hleb, D.O. Lapotko, Photothermal properties of gold nanoparticles under exposure to high optical energies. Nanotechnology 19, 355702 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951)CrossRefGoogle Scholar
  65. 65.
    K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)ADSCrossRefzbMATHGoogle Scholar
  66. 66.
    Y.R. Chen, Optical second harmonic generation at interfaces. Annu. Rev. Phys. Chem. 40, 327–350 (1989)ADSCrossRefGoogle Scholar
  67. 67.
    J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, P. F. Brevet, Electric dipole origin of the second harmonic generation of small metallic particles. Phys. Rev. B 71(16), 165407 (2005)ADSCrossRefGoogle Scholar
  68. 68.
    K. Ueno, H. Misawa, Fabrication of nanoengineered metallic structures and their application to nonlinear photochemical reactions. Bull. Chem. Soc. Jpn 85, 843–853 (2012)CrossRefGoogle Scholar
  69. 69.
    K. Imura, T. Nagahara, H. Okamoto, Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J. Phys. Chem. B 109, 13214–13220 (2005)CrossRefGoogle Scholar
  70. 70.
    A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, G.P. Wiederrecht, Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys. Rev. Lett. 95, 267405 (2005)ADSCrossRefGoogle Scholar
  71. 71.
    T. Götz, M. Buck, C. Dressler, F. Eisert, F. Träger, Optical second-harmonic generation by supported metal clusters: size and shape effects. Appl. Phys. A 60, 607–612 (1995)ADSCrossRefGoogle Scholar
  72. 72.
    M.I. Stockman, D.J. Bergman, C. Anceau, S. Brasselet, J. Zyss, Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations. Phys. Rev. Lett. 92, 057402 (2004)ADSCrossRefGoogle Scholar
  73. 73.
    M.R. Beversluis, A. Bouhelier, L. Novotny, Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 68, 115433 (2003)ADSCrossRefGoogle Scholar
  74. 74.
    J. Beermann, T. Sondergaard, S.M. Novikov, S.I. Bozhevolnyi, E. Devaux, T.W. Ebbesen, Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films. New J. Phys. 13, 063029 (2011)ADSCrossRefGoogle Scholar
  75. 75.
    J. Güdde, J. Hohlfeld, J.G. Müller, E. Matthias, Damage threshold dependence on electron–phonon coupling in Au and Ni films. Appl. Surf. Sci. 127–129, 40–45 (1998)CrossRefGoogle Scholar
  76. 76.
    P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)ADSCrossRefGoogle Scholar
  77. 77.
    G.M. Hale, M.R. Querry, Optical constants of water in the 200-nm to 200-µm wavelength region. Appl. Opt. 12, 555–563 (1973)ADSCrossRefGoogle Scholar
  78. 78.
    O. Lecarme, T. Pinedo-Rivera, K. Berton, J. Berthier, D. Peyrade, Plasmonic coupling in nondipolar gold colloidal dimers. Appl. Phys. Lett. 98, 083122 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • V. Mondes
    • 1
  • E. Antonsson
    • 1
  • J. Plenge
    • 1
  • C. Raschpichler
    • 1
  • I. Halfpap
    • 1
  • A. Menski
    • 1
  • C. Graf
    • 1
  • M. F. Kling
    • 2
  • E. Rühl
    • 1
    Email author
  1. 1.Physical ChemistryFreie Universität BerlinBerlinGermany
  2. 2.Physics DepartmentLudwig-Maximilians-UniversitätGarchingGermany

Personalised recommendations