Advertisement

Applied Physics B

, 122:115 | Cite as

Integrated superconducting detectors on semiconductors for quantum optics applications

  • M. Kaniber
  • F. Flassig
  • G. Reithmaier
  • R. Gross
  • J. J. Finley
Article
Part of the following topical collections:
  1. Quantum Repeaters: From Components to Strategies

Abstract

Semiconductor quantum photonic circuits can be used to efficiently generate, manipulate, route and exploit nonclassical states of light for distributed photon-based quantum information technologies. In this article, we review our recent achievements on the growth, nanofabrication and integration of high-quality, superconducting niobium nitride thin films on optically active, semiconducting GaAs substrates and their patterning to realize highly efficient and ultra-fast superconducting detectors on semiconductor nanomaterials containing quantum dots. Our state-of-the-art detectors reach external detection quantum efficiencies up to 20 % for ~4 nm thin films and single-photon timing resolutions <72 ps. We discuss the integration of such detectors into quantum dot-loaded, semiconductor ridge waveguides, resulting in the on-chip, time-resolved detection of quantum dot luminescence. Furthermore, a prototype quantum optical circuit is demonstrated that enabled the on-chip generation of resonance fluorescence from an individual InGaAs quantum dot, with a linewidth <15 μeV displaced by 1 mm from the superconducting detector on the very same semiconductor chip. Thus, all key components required for prototype quantum photonic circuits with sources, optical components and detectors on the same chip are reported.

Keywords

Ridge Waveguide Nitrogen Partial Pressure Excitation Power Density Dark Count Rate Niobium Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully acknowledge D. Sahin and A. Fiore (TU Eindhoven), K. Berggren and F. Najafi (MIT), and R. Hadfield (University of Glasgow) for useful discussions and the financial support from BMBF via QuaHL-Rep, project number 01BQ1036, Q.com via project number 16KIS0110, the EU via the integrated project SOLID and the DFG via SFB 631-B3.

References

  1. 1.
    J.L. O’Brien, A. Furusawa, J. Vuckovic, Photonic quantum technologies. Nat. Photonics 3, 687 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    A.J. Shields, Semiconductor quantum light sources. Nat. Photonics 1, 215 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    A. Laucht, S. Pütz, T. Günther, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A.W. Holleitner, M. Kaniber, J.J. Finley, A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 011014 (2012)Google Scholar
  4. 4.
    A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, V. Vuckovic, Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859 (2008)CrossRefGoogle Scholar
  5. 5.
    A. Politi, J. Matthews, M.G. Thompson, J.L. O’Brien, Integrated quantum photonics. IEEE J. Quantum Electron. 15, 1673 (2009)CrossRefGoogle Scholar
  6. 6.
    J.C.F. Matthews, A. Politi, A. Stefanov, J.L. O’Brien, Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    P. Lodahl, S. Mahmoodian, S. Stobbe, Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Schwagmann, S. Kalliakos, I. Farrer, J.P. Griffiths, G.A.C. Jones, D.A. Ritchie, A.J. Shields, On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide. Appl. Phys. Lett. 99, 261108 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    T.B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, A. Fiore, Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides. Appl. Phys. Lett. 100, 061122 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    W.H.P. Pernice, C. Schuck, O. Minaeva, M. Li, G.N. Goltsman, A.V. Sergienko, H.X. Than, High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    F. Najafi, F. Marsili, E. Dauler, R.J. Molnar, K.K. Berggren, Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors. Appl. Phys. Lett. 100(152), 602 (2012)Google Scholar
  13. 13.
    G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vuckovic, R. Gross, J.J. Finley, On-chip generation, routing, and detection of resonance fluorescence. Nano Lett. 15, 5208 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    D.E. Chang, A.S. Sorensen, E.A. Demler, M.D. Lukin, A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807 (2007)CrossRefGoogle Scholar
  16. 16.
    J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, G.S. Götzinger, V. Sandoghdar, A single-molecule optical transistor. Nature 460, 76 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    D. Tiarks, S. Baur, K. Schneider, S. Dürr, G. Rempe, Single-photon transistor using a Förster resonance. Phys. Rev. Lett. 113, 053602 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, S. Hofferberth, Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmeyer, J.-W. Pan, Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    H.-J. Briegel, W. Dürr, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    G. Reithmaier, J. Senf, S. Lichtmannecker, T. Reichert, F. Flassig, A. Voss, R. Gross, J.J. Finley, Optimisation of NbN thin films on GaAs substrates for in situ single photon detection in structured photonic devices. J. Appl. Phys. 113, 143507 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, J.J. Finley, On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors. Sci. Rep. 3, 1901 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    G. Reithmaier, F. Flassig, P. Hasch, S. Lichtmannecker, K. Müller, J. Vuckovic, R. Gross, M. Kaniber, J.J. Finley, A carrier relaxation bottleneck probed in single InGaAs quantum dots using integrated superconducting single photon detectors. Appl. Phys. Lett. 105, 081107 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    F. Flassig, M. Kaniber, G. Reithmaier, K. Müller, A. Andrejew, R. Gross, J. Vuckovic, J.J. Finley, Towards on-chip generation, routing and detection of non-classical light. Proc. SPIE 9373, 937305 (2015)CrossRefGoogle Scholar
  25. 25.
    J. Villegirr, N. Hadacek, S. Monso, B. Delnet, A. Roussy, P. Febvre, G. Lamura, J. Laval, NbN multilayer technology on R-plane sapphire. IEEE Trans. Appl. Supercond. 11, 68 (2001)CrossRefGoogle Scholar
  26. 26.
    F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, F. Lévy, High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process. Opt. Express 16, 3191 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    W.N. Maung, D.P. Butler, C.A. Huang, Fabrication of NbN thin films by reactive sputtering. J. Vac. Sci. Technol. A Vac. Surf. Films 11, 615 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    Wong, W.D. Sproul, X. Chu, S.A. Barnett, Reactive magnetron sputter deposition of niobium nitride films. J. Vac. Sci. Technol. A Vac. Surf. Films 11, 1528 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    F.M. Smits, Measurement of sheet resistivities with the four-point probe. Bell Syst. Tech. J. 37, 711 (1958)CrossRefGoogle Scholar
  30. 30.
    F. Marsili, A. Gaggero, L.H. Li, A. Surrente, R. Leoni, F. Lvy, A. Fiore, High quality superconducting NbN thin films on GaAs. Supercond. Sci. Tech. 22, 095013 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    A.J. Kerman, E.A. Dauler, J.K.W. Yang, K.M. Rosfjord, V. Anant, K.K. Berggren, G.N. Goltsman, Constriction-limited detection efficiency of superconducting nanowire single-photon detectors. Appl. Phys. Lett. 90, 101110 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    L. Maingault, M. Tarkhov, I. Floarya, A. Semenov, R.E. de Lamaestre, P. Cavalier, G. Gol’tsman, J.-P. Poizat, J.-C. Villéger, Spectral dependency of superconducting single photon detectors. J. Appl. Phys. 107, 116103 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznew, N. Kaurova, O. Minaeva, G. Gol’tsman, K.G. Lagoudakis, M. Benkhaoul, D. Lvy, A. Fiore, Superconducting nanowire photonnumber-resolving detector at telecommunication wavelengths. Nat. Photonics 2, 302 (2008)CrossRefGoogle Scholar
  34. 34.
    S.N. Dorenbos, P. Forn-Díaz, T. Fuse, A.H. Verbruggen, T. Zijlstra, T.M. Klapwijk, V. Zwiller, Low gap superconducting single photon detectors for infrared sensitivity. Appl. Phys. Lett. 98, 251102 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Z. Yan, A. Majedi, S. Safavi-Naeini, Physical modeling of hot-electron superconducting single-photon detectors. IEEE Trans. Appl. Supercond. 17, 3789 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    A. Gaggero, S.J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G.J. Hamhuis, R. Nötzel, R. Sanjines, A. Fiore, Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications. Appl. Phys. Lett. 97, 151108 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    A. Korneev, V. Matvienko, O. Minaeva, I. Milstnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman, W. Slysz, A. Pearlman, A. Verevkin, R. Sobolewski, Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared. IEEE Trans. Appl. Supercond. 15, 571 (2005)CrossRefGoogle Scholar
  38. 38.
    G.N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milstnaya, G. Chulkova, O. Minaeva, I. Smirnov, B. Voronov, W. Sysz, A. Pearlman, A. Verevkin, R. Sobolweski, Ultra-fast superconducting single-photon detectors for near-infrared-wavelength quantum communications. Phys. Status Solidi (c) 2, 1480 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    G. Gol’tsman, O. Okunev, G. Chulkov, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, R. Sobolewski, Fabrication and properties of an ultrafast NbN hot-electron single-photon detector. IEEE Trans. Appl. Supercond. 11, 574 (2001)CrossRefGoogle Scholar
  40. 40.
    W.J. Skocpol, M.R. Beasley, M. Tinkham, Self-heating hotspots in superconducting thin-film microbridges. J. Appl. Phys. 45, 4054 (1974)ADSCrossRefGoogle Scholar
  41. 41.
    A.D. Semenov, G.N. Goltsman, A.A. Korneev, Quantum detection by current carrying superconducting film. Phys. C Supercond. Appl. 351, 439 (2001)Google Scholar
  42. 42.
    M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hubers, N.A. Gippius, Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses. J. Appl. Phys. 108, 014507 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    G.M. Reithmaier, Superconducting detectors for semiconductor quantum photonics (Printy Digitaldruck, München, 2015)Google Scholar
  44. 44.
    Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/, [Online]
  45. 45.
    J.P. Spengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, A. Fiore, Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    F. Marsili, F. Bellei, F. Najafi, A.E. Dane, E.A. Dauler, R.J. Molnar, K.K. Berggren, Efficient single photon detection from 500 nm to 5 µm wavelength. Nano Lett. 12, 4799 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    R. Hadfield, Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    J.M. Gérard, O. Cabrol, B. Sermage, InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si. Appl. Phys. Lett. 68, 3123 (1996)ADSCrossRefGoogle Scholar
  49. 49.
    E. Viasnoff-Schwoob, C. Weisbuch, H. Bensity, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, C.J.M. Smith, Spontaneous emission enhancement of quantum dots in a photonic crystal wire. Phys. Rev. Lett. 95, 183901 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    J. Urayama, T.B. Norris, J. Singh, P. Bhattacharaya, Observation of phonon bottleneck in quantum dot electronic relaxation. Phys. Rev. Lett. 86, 4930 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    J.J. Finley, A.D. Ashmore, A. Lemaître, D.J. Mowbray, M.S. Skolnick, I.E. Itskevich, P.A. Maksym, M. Hopkinson, T.F. Krauss, Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots. Phys. Rev. B 63, 073307 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    H. Nguyen, G. Sallen, C. Voisin, P. Roussignol, C. Diedrichs, G. Cassabois, Optically gated resonant emission of single quantum dots. Phys. Rev. Lett. 108, 057401 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    M.N. Makhonin, J.E. Dixon, R.J. Coles, B. Royall, I.J. Luxmoore, E. Clarke, M. Hugues, M.S. Skolnick, A.M. Fox, Waveguide coupled resonance fluorescence from on-chip quantum emitters. Nano Lett. 14, 6997 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, A. Abstreiter, Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    C. Matthiesen, A.N. Vamivakas, M. Atatür, Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Kaniber
    • 1
  • F. Flassig
    • 1
  • G. Reithmaier
    • 1
  • R. Gross
    • 2
    • 3
  • J. J. Finley
    • 1
    • 3
  1. 1.Walter Schottky Institut and Physik DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Bayerische Akademie der Wissenschaften und Physik Department, Walther-Meißner-InstitutTechnische Universität MünchenGarchingGermany
  3. 3.Nanosystems Initiative MunichMunichGermany

Personalised recommendations