Applied Physics B

, 122:96 | Cite as

Overcoming lossy channel bounds using a single quantum repeater node

Article
Part of the following topical collections:
  1. Quantum Repeaters: From Components to Strategies

Abstract

We propose a scheme for performing quantum key distribution (QKD) which has the potential to beat schemes based on the direct transmission of photons between the communicating parties. In our proposal, the communicating parties exchange photons with two quantum memories placed between them. This is a very simple quantum repeater scheme and can be implemented with currently available technology. Ideally, its secret key rate scales as the square root of the transmittivity of the optical channel, which is superior to QKD schemes based on direct transmission because key rates for the latter scale at best linearly with transmittivity. Taking into account various imperfections in each component of our setup, we present parameter regimes in which our protocol outperforms protocols based on direct transmission.

References

  1. 1.
    M. Takeoka, S. Guha, M.M. Wilde, IEEE Trans. Inf. Theory 60, 4987 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Guha et al., Rate-loss analysis of an efficient quantum repeater architecture (2014). arXiv:1404.7183
  3. 3.
    H.J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 81, 5932 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    L.M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Nature 414, 413 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Rev. Mod. Phys. 83, 33 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    L. Jiang et al., Phys. Rev. A 79, 032325 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    W. Munro, A. Stephens, S. Devitt, K. Harrison, K. Nemoto, Nat. Photonics 6, 777 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    M. Razavi, M. Piani, N. Lütkenhaus, Phys. Rev. A 80, 032301 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    A.G. Fowler et al., Phys. Rev. Lett. 104, 180503 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    R. Van Meter, T. Satoh, T.D. Ladd, W.J. Munro, K. Nemoto, Netw. Sci. 3, 82 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Muralidharan, J. Kim, N. Lütkenhaus, M.D. Lukin, L. Jiang, Phys. Rev. Lett. 112, 250501 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    L. Hartmann, B. Kraus, H.-J. Briegel, W. Dür, Phys. Rev. A 75, 032310 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    C. Panayi, M. Razavi, X. Ma, N. Lütkenhaus, New J. Phys. 16, 043005 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    B. Blinov, D. Moehring, L.-M. Duan, C. Monroe, Nature 428, 153 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    H.K. Lo, F. Chau, M. Ardehali, J. Cryptol. 18, 133 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    N.J. Beaudry, T. Moroder, N. Lütkenhaus, Phys. Rev. Lett. 101, 093601 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    V. Scarani et al., Rev. Mod. Phys. 81, 1301 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    E.W. Streed, B.G. Norton, A. Jechow, T.J. Weinhold, D. Kielpinski, Phys. Rev. Lett. 106, 010502 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    S. Olmschenk et al., Phys. Rev. A 76, 052314 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    J. Benhelm, G. Kirchmair, C.F. Roos, R. Blatt, Nat. Phys. 4, 463 (2008)CrossRefGoogle Scholar
  21. 21.
    T. Kim, P. Maunz, J. Kim, Phys. Rev. A 84, 063423 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    T.P. Harty et al., Phys. Rev. Lett. 113, 220501 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    H.-K. Lo, X. Ma, K. Chen, Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and Institute for Quantum ComputingUniversity of WaterlooWaterlooCanada
  2. 2.Department of Applied PhysicsYale UniversityNew HavenUSA
  3. 3.Electrical and Computer Engineering DepartmentDuke UniversityDurhamUSA

Personalised recommendations