Advertisement

Applied Physics B

, 122:91 | Cite as

The optimal antenna for nonlinear spectroscopy of weakly and strongly scattering nanoobjects

  • Thorsten Schumacher
  • Matthias Brandstetter
  • Daniela Wolf
  • Kai Kratzer
  • Mario Hentschel
  • Harald Giessen
  • Markus Lippitz
Article
Part of the following topical collections:
  1. Ultrafast Nanooptics

Abstract

Optical nanoantennas, i.e., arrangements of plasmonic nanostructures, promise to enhance the light–matter interaction on the nanoscale. In particular, nonlinear optical spectroscopy of single nanoobjects would profit from such an antenna, as nonlinear optical effects are already weak for bulk material, and become almost undetectable for single nanoobjects. We investigate the design of optical nanoantennas for transient absorption spectroscopy in two different cases: the mechanical breathing mode of a metal nanodisk and the quantum-confined carrier dynamics in a single CdSe nanowire. In the latter case, an antenna with a resonance at the desired wavelength optimally increases the light intensity at the nanoobject. In the first case, the perturbation of the antenna by the investigated nanosystem cannot be neglected and off-resonant antennas become most efficient.

Keywords

Oscillator Strength Nonlinear Response Probe Pulse Hybrid Mode Extinction Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully acknowledge financial support from the DFG (SPP 1391, ultrafast nanooptics).

References

  1. 1.
    A. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    J.A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N.J. Halas, V.N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Self-assembled plasmonic nanoparticle clusters. Science 328(5982), 1135–1138 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    W.E. Moerner, M. Orrit, Illuminating single molecules in condensed matter. Science 283(5408), 1670–1676 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    P. Bharadwaj, B. Deutsch, L. Novotny, Optical antennas. Adv. Opt. Photonics 1, 438–483 (2009)CrossRefGoogle Scholar
  5. 5.
    H. Harutyunyan, G. Volpe, R. Quidant, L. Novotny, Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys. Rev. Lett. 108, 217403 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    P. Mühlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308(5728), 1607–1609 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, P.F. Brevet, Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. Nano Lett. 10(5), 1717–1721 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    M. Lippitz, M. van Dijk, M. Orrit, Third-harmonic generation from single gold nanoparticles. Nano Lett. 5(4), 799–802 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    N. Liu, M.L. Tang, M. Hentschel, H. Giessen, A.P. Alivisatos, Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10(8), 631–636 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Muellen, W.E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3(11), 654–657 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O.G. Schmidt, H. Giessen, M. Lippitz, Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna. Nano Lett. 10(11), 4555–4558 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, M. Lippitz, Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle. Nat. Commun. 2, 333 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A.M. Funston, C. Novo, P. Mulvaney, L.M. Liz-Marzan, F.J. Garcia de Abajo, Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37(9), 1792–1805 (2008)CrossRefGoogle Scholar
  14. 14.
    K. Kelly, E. Coronado, L. Zhao, G. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107(3), 668–677 (2003)CrossRefGoogle Scholar
  15. 15.
    M.A. van Dijk, M. Lippitz, M. Orrit, Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry. Phys. Rev. Lett. 95(26), 267406 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    T. Schumacher, H. Giessen, M. Lippitz, Ultrafast spectroscopy of quantum confined states in a single CdSe nanowire. Nano Lett. 13(4), 1706–1710 (2013)Google Scholar
  17. 17.
    S.S. Lo, T.A. Major, N. Petchsang, L. Huang, M.K. Kuno, G.V. Hartland, Charge carrier trapping and acoustic phonon modes in single CdTe nanowires. ACS Nano 6(6), 5274–5282 (2012)CrossRefGoogle Scholar
  18. 18.
    M. Perner, S. Gresillon, J. Marz, G. von Plessen, J. Feldmann, J. Porstendorfer, K.J. Berg, G. Berg, Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles. Phys. Rev. Lett. 85(4), 792–795 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    J. Bigot, V. Halte, J. Merle, A. Daunois, Electron dynamics in metallic nanoparticles. Chem. Phys. 251(1–3), 181–203 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    B. Draine, P. Flatau, Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11(4), 1491–1499 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302(5644), 419–422 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    P.B. Johnson, R.W. Christy, Optical constants of noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)ADSCrossRefGoogle Scholar
  23. 23.
    J.H. Hodak, A. Henglein, G.V. Hartland, Size dependent properties of au particles: coherent excitation and dephasing of acoustic vibrational modes. J. Chem. Phys. 111(18), 8613–8621 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Comsol Multiphysics structural mechanics—user’s guide. Comsol 2012, version: 4.3Google Scholar
  25. 25.
    G.V. Hartland, Coherent excitation of vibrational modes in metallic nanoparticles. Annu. Rev. Phys. Chem. 57, 403–430 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    A. Doicu, T. Wriedt, Y. Eremin, Light Scattering by Systems of Particles. Null-Field Method with Discrete Sources—Theory and Programs (Springer, Berlin, 2006)CrossRefzbMATHGoogle Scholar
  27. 27.
    A.M. Funston, C. Novo, T.J. Davis, P. Mulvaney, Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 9(4), 1651–1658 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    C. Carey, Y. Yu, M. Kuno, G. Hartland, Ultrafast transient absorption measurements of charge carrier dynamics in single II–VI nanowires. J. Phys. Chem. C 113(44), 19077–19081 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Giblin, F. Vietmeyer, M.P. McDonald, M. Kuno, Single nanowire extinction spectroscopy. Nano Lett. 11(8), 3307–3311 (2011)CrossRefGoogle Scholar
  30. 30.
    A. Shabaev, A.L. Efros, 1D Exciton spectroscopy of semiconductor nanorods. Nano Lett. 4(10), 1821–1825 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    M. Pfeiffer, K. Lindfors, P. Atkinson, A. Rastelli, O.G. Schmidt, H. Giessen, M. Lippitz, Positioning plasmonic nanostructures on single quantum emitters. Phys. Status Solidi (b) 249(4), 678–686 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96(11), 113002 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    J. Goffard, D. Gerard, P. Miska, A.-L. Baudrion, R. Deturche, J. Plain, Plasmonic engineering of spontaneous emission from silicon nanocrystals. Sci. Rep. 3, 2672 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Thorsten Schumacher
    • 1
    • 2
    • 3
  • Matthias Brandstetter
    • 1
    • 2
    • 3
  • Daniela Wolf
    • 1
    • 2
    • 3
  • Kai Kratzer
    • 2
    • 3
  • Mario Hentschel
    • 2
    • 3
  • Harald Giessen
    • 3
  • Markus Lippitz
    • 1
    • 2
    • 3
  1. 1.Experimental Physics IIIUniversity of BayreuthBayreuthGermany
  2. 2.Max Planck Institute for Solid State ResearchStuttgartGermany
  3. 3.4th Physics Institute and Research Center SCoPEUniversity of StuttgartStuttgartGermany

Personalised recommendations