Applied Physics B

, 122:77 | Cite as

Nonlinear optics of complex plasmonic structures: linear and third-order optical response of orthogonally coupled metallic nanoantennas

  • Bernd MetzgerEmail author
  • Mario Hentschel
  • Maxim Nesterov
  • Thorsten Schumacher
  • Markus Lippitz
  • Harald Giessen
Part of the following topical collections:
  1. Ultrafast Nanooptics


We investigate the polarization-resolved linear and third-order optical response of plasmonic nanostructure arrays that consist of orthogonally coupled gold nanoantennas. By rotating the incident light polarization direction, either one of the two eigenmodes of the coupled system or a superposition of the eigenmodes can be excited. We find that when an eigenmode is driven by the external light field, the generated third-harmonic signals exhibit the same polarization direction as the fundamental field. In contrast, when a superposition of the two eigenmodes is excited, third-harmonic can efficiently be radiated at the perpendicular polarization direction. Furthermore, the interference of the coherent third-harmonic signals radiated from both nanorods proves that the phase between the two plasmonic oscillators changes in the third-harmonic signal over \(3\pi\) when the laser is spectrally tuned over the resonance, rather than over \(\pi\) as in the case of the fundamental field. Finally, almost all details of the linear and the nonlinear spectra can be described by an anharmonic coupled oscillator model, which we discuss in detail and which provides deep insight into the linear and the nonlinear optical response of coupled plasmonic nanoantennas.


Gold Nanorods Plasmonic Mode Nonlinear Optical Response Nonlinear Optical Effect Linear Response Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge financial support from the DFG (SPP1391, ultrafast nanooptics), from the Baden-Württemberg Stiftung (Kompetenznetz Funktionelle Nanostrukturen), from the BMBF (13N10146), from the ERC (Complexplas), and the Alexander von Humboldt Foundation.


  1. 1.
    J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)Google Scholar
  4. 4.
    N. Liu, H. Giessen, Coupling Effects in Optical Metamaterials. Angew. Chem. Int. Ed. 49, 9838–9852 (2010)CrossRefGoogle Scholar
  5. 5.
    X. Yin, M. Schäferling, B. Metzger, H. Giessen, Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model. Nano Lett. 13, 6238–6243 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2007)Google Scholar
  7. 7.
    P. Mühlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308, 1607–1609 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photon 6, 737–748 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    J.Y. Suh, T.W. Odom, Nonlinear properties of nanoscale antennas. Nano Today 8, 469–479 (2013)CrossRefGoogle Scholar
  10. 10.
    S.B. Hasan, F. Lederer, C. Rockstuhl, Nonlinear plasmonic antennas. Mater. Today 17, 478–485 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Hanke, J. Cesar, V. Knittel, A. Trugler, U. Hohenester, A. Leitenstorfer, R. Bratschitsch, Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett. 12, 992–996 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    M. Hentschel, T. Utikal, H. Giessen, M. Lippitz, Quantitative modelling of the third harmonic emission spectrum of plasmonic nanoantennas. Nano Lett. 12, 3778 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    H. Harutyunyan, G. Volpe, R. Quidant, L. Novotny, Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys. Rev. Lett. 108, 217403 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    B. Metzger, T. Schumacher, M. Hentschel, M. Lippitz, H. Giessen, Third harmonic mechanism in complex plasmonic fano structures. ACS Photonics 1, 471–476 (2014)CrossRefGoogle Scholar
  15. 15.
    B.K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, M. Kauranen, Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett. 7, 1251–1255 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, M. Kauranen, Metamaterials with tailored nonlinear optical response. Nano Lett. 12, 673–677 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    R. Czaplicki, M. Zdanowicz, K. Koskinen, J. Laukkanen, M. Kuittinen, M. Kauranen, Dipole limit in second-harmonic generation from arrays of gold nanoparticles. Opt. Express 19, 26866–26871 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, M. Kuittinen, Enhancement of second-harmonic generation from metal nanoparticles by passive elements. Phys. Rev. Lett. 110, 1–5 (2013)CrossRefGoogle Scholar
  19. 19.
    M.W. Klein, C. Enkrich, M. Wegener, S. Linden, Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    F.B.P. Niesler, N. Feth, S. Linden, M. Wegener, Second-harmonic optical spectroscopy on split-ring-resonator arrays. Opt. Lett. 36, 1533–1535 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    S. Linden, F.B.P. Niesler, J. Förstner, Y. Grynko, T. Meier, M. Wegener, Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys. Rev. Lett. 109, 1 (2012)Google Scholar
  22. 22.
    K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, X. Zhang, Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater. 14, 379–383 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    K. Thyagarajan, J. Butet, O.J.F. Martin, Augmenting second harmonic generation using fano resonances in plasmonic systems. Nano Lett. 2013, 1847–1851 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Zhang, F. Wen, Y.-R. Zhen, P. Nordlander, N.J. Halas, Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proc. Natl. Acad. Sci. USA 110, 9215–9219 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, H. Giessen, Towards the origin of the nonlinear response in hybrid plasmonic systems. Phys. Rev. Lett. 106, 133901 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    H. Aouani, M. Rahmani, M. Navarro-Cía, S.A. Maier, Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat. Nanotechnol. 9, 290–294 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C.B. Murray, B. Knabe, K. Buse, H. Giessen, Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. Nano Lett. 14, 2867–2872 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    A.M. Funston, C. Novo, T.J. Davis, P. Mulvaney, Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 9, 1651–1658 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    L.-J. Black, Y. Wang, C.H. de Groot, A. Arbouet, O.L. Muskens, Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces. ACS Nano 8, 6390–6399 (2014)CrossRefGoogle Scholar
  30. 30.
    E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)ADSCrossRefGoogle Scholar
  32. 32.
    I.N. Bronstein, K.A. Semendjajew, G. Musiol, H. Mühlig, Taschenbuch der Mathematik (Verlag Harri Deutsch, 2005)Google Scholar
  33. 33.
    S.A. Maier, in Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007), Chap. 5, Localized Surface Plasmons, formula 5.13bGoogle Scholar
  34. 34.
    R.R. Birss, Symmetry and Magnetism (North-Holland, Amsterdam, 1966)zbMATHGoogle Scholar
  35. 35.
    R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, Elsevier, 2008)Google Scholar
  36. 36.
    M.W. Klein, T. Tritschler, M. Wegener, S. Linden, Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs. Phys. Rev. B 72, 115113 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    B. Metzger, M. Hentschel, M. Lippitz, H. Giessen, Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas. Opt. Lett. 37, 4741–4743 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    K. Thyagarajan, S. Rivier, A. Lovera, O.J. Martin, Enhanced second-harmonic generation from double resonant plasmonic antennae. Opt. Express 20, 12860–12865 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, H. Giessen, Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength. Nano Lett. 15, 3917–3922 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    M. Celebrano et al., Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol. 10, 412–417 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    R.P. Feynman, R.B. Leighton, M. Sands, in The Feynman Lectures on Physics, vol. 1 (Addison-Wesley, Boston, 1977), Chap. 30, Diffraction, formula 30.19Google Scholar
  42. 42.
    B. Metzger, A. Steinmann, F. Hoos, S. Pricking, H. Giessen, Compact laser source for high-power white-light and widely tunable sub 65 fs laser pulses. Opt. Lett. 35, 3961–3963 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    B. Metzger, A. Steinmann, H. Giessen, High-power widely tunable sub-20fs Gaussian laser pulses for ultrafast nonlinear spectroscopy. Opt. Express 19, 24354–24360 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Bernd Metzger
    • 1
    Email author
  • Mario Hentschel
    • 1
  • Maxim Nesterov
    • 1
  • Thorsten Schumacher
    • 2
    • 3
  • Markus Lippitz
    • 2
    • 3
  • Harald Giessen
    • 1
  1. 1.4th Physics Institute and Research Center SCoPEUniversity of StuttgartStuttgartGermany
  2. 2.Max Planck Institute for Solid State ResearchStuttgartGermany
  3. 3.Experimental Physics IIIUniversity of BayreuthBayreuthGermany

Personalised recommendations