Advertisement

Applied Physics B

, 122:70 | Cite as

Improving the efficiency of high harmonic generation (HHG) by Ne-admixing into a pure Ar gas medium

  • Hyun Ook Seo
  • Tiberiu Arion
  • Friedrich Roth
  • Daniel Ramm
  • Cosmin Lupulescu
  • Wolfgang Eberhardt
Article

Abstract

Laser-based higher-order harmonic generation has been investigated extensively in the past two decades. The current manuscript deals with the high harmonic generation (HHG) outputs from a gas-filled waveguide when using mixtures of two rare gases (Ar and Ne) as nonlinear media. We find that the efficiency of the HHG process can be optimized by changing the pressure or alternatively the mixing ratio of the two gases. This is attributed to the fact that both of these parameters have an effect on the phase-matching in the waveguide. These observations are especially useful when phase matching in a gas jet is concerned, where the absolute local pressure of the gas media cannot be controlled as readily as in a capillary-based HHG setup.

Keywords

Harmonic Order High Harmonic Generation Secondary Electron Yield High Harmonic Generation Spectrum Drive Laser Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank the Helmholtz-Zentrum Berlin for lending us the refocusing grating. These experiments were supported by the Helmholtz Gemeinschaft within the research field ‘Structure of Matter.’

References

  1. 1.
    T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 546 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    T. Popmintchev, M.-C. Chen, P. Arpin, M.M. Murnane, H.C. Kapteyn, Nat. Photonics 4, 822 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    P. Wernet, J. Gaudin, K. Godehusen, O. Schwarzkopf, W. Eberhardt, Rev. Sci. Instrum. 82, 063114 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    B. Frietsch, R. Carley, K. Döbrich, C. Gahl, M. Teichmann, O. Schwarzkopf, Ph Wernet, M. Weinelt, Rev. Sci. Instrum. 84, 075106 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    J.L. Kraus, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 68, 3535 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    Ph Balcou, C. Cornaggia, A.S.L. Gomes, L.A. Lompré, A. L’Huillier, J. Phys. B At. Mol. Opt. Phys. 25, 4467 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    X.F. Li, A. L’.Huillier, M. Ferray, L. A. Lompré, G. Mainfray. Phys. Rev. A 39, 5751 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    J.J. Macklin, J.D. Kmetec, C.L. Gordon III, Phys. Rev. Lett. 70, 766 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    Ch. Spielmann, N.H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, F. Krausz, Science 24, 661 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    A.N. Naumov, A.M. Zheltikov, A.B. Fedotov, D.A. Sidorov-Biryukov, A.P. Tarasevitch, P. Zhou, D. Linde, J. Opt. Soc. Am. B 18, 811 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    A.N. Naumov, A.M. Zheltikov, Quantum Electron. 32, 129 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    E.A. Gibson, A. Paul, N. Wagner, R. Tobey, S. Backus, I.P. Christov, M.M. Murnane, H.C. Kapteyn, Phys. Rev. Lett. 92, 033001 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    E. Constant, D. Garzella, P. Berger, E. Mével, Ch. Dorrer, C. Le Blanc, F. Salin, P. Agostini, Phys. Rev. Lett. 82, 1668 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    A. Rundquist, C.G. Durfee II, Z. Chang, C. Herne, S. Backus, M.M. Murnane, H.C. Kapteyn, Science 280, 1412 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    K. Ishikawa, Phys. Rev. Lett. 91, 043002 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    I.J. Kim, C.M. Kim, H.T. Kim, G.H. Lee, Y.S. Lee, J.Y. Park, D.J. Cjo, C.H. Nam, Phys. Rev. Lett. 94, 243901 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    A. Heinrich, W. Kornelis, M.P. Anscombe, C.P. Hauri, P. Schlup, J. Biegert, U. Keller, J. Phys. B At. Mol. Opt. Phys. 39, S275 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    R. Hilbig, R. Wallenstein, IEEE J. Quantum Elect. 17, 1566 (1981)ADSCrossRefGoogle Scholar
  20. 20.
    E.J. Takahashi, T. Kanai, K.L. Ishikawa, Y. Nabekawa, K. Midorikawa, Phys. Rev. Lett. 99, 053904 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    F. Lu, Y. Xia, S. Zhang, D. Chen, Opt. Laser Technol. 57, 145 (2014)ADSCrossRefGoogle Scholar
  22. 22.
  23. 23.
    T. Arion, H. O. Seo, C. Lupulescu, F. Roth, D. Ramm and W. Eberhardt, unpublishedGoogle Scholar
  24. 24.
  25. 25.
    I. Velchev, W. Hogervorst, W. Ubachs, J. Phys. B At. Mol. Opt. Phys. 32, L511 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    E.B. Saloman, C.J. Sansonetti, J. Phys. Chem. Ref. Data 33, 1113 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    T. Popmintchev, M.-C. Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I.P. Christov, M.M. Murnane, H.C. Kapteyn, Proc. Natl. Acad. Sci. U.S.A. 106, 10516 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    C.G. Durfee III, A.R. Rundquist, S. Backus, C. Herne, M.M. Murnane, H.C. Kapteyn, Phys. Rev. Lett. 83, 2187 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    G. Wang, C. Jin, A.-T. Le, C.D. Lin, Phys. Rev. A 84, 053404 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    W. Schulze, D.M. Kolb, J. Chem. Soc. Faraday Trans. 70, 1098 (1974)CrossRefGoogle Scholar
  31. 31.
    C. Brée, A. Demircan, G. Steinmeyer, IEEE J. Quantum Electron. 46, 433 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hyun Ook Seo
    • 1
  • Tiberiu Arion
    • 1
  • Friedrich Roth
    • 1
  • Daniel Ramm
    • 1
  • Cosmin Lupulescu
    • 2
  • Wolfgang Eberhardt
    • 1
    • 2
  1. 1.Centre for Free-Electron Laser Science/DESYHamburgGermany
  2. 2.Institut für Optik und Atomare PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations