Advertisement

Applied Physics B

, 122:66 | Cite as

Nanogratings formation in multicomponent silicate glasses

  • M. Lancry
  • F. Zimmerman
  • R. Desmarchelier
  • J. Tian
  • F. Brisset
  • S. Nolte
  • B. Poumellec
Article

Abstract

We demonstrate the formation of porous nanogratings in various oxide glasses including TiO2-doped silica, GeO2 and alumino-borosilicate by near-IR femtosecond laser radiation. ULE and GeO2 glasses exhibit similar birefringence to pure silica, whereas Borofloat 33 reveals twice weaker amplitude. Using quantitative birefringence measurements, small-angle X-ray scattering and scanning electron microscopy, we correlate birefringence and porous nanolayers formation according to laser repetition rate and glass composition. We show that heat accumulation is a crucial parameter limiting the glass decomposition and thus nanogratings formation.

Keywords

Repetition Rate GeO2 High Repetition Rate Heat Accumulation Laser Track 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been performed in the framework of the FLAG (Femtosecond Laser Application in Glasses) international project with the support of FP7-PEOPLE-IRSES e-FLAG 247635, the Agence Nationale pour la Recherche (ANR-09-BLAN-0172-01). We acknowledge beamtime at the Swiss Light Source (PSI, Villigen Ch) and excellent support by M. Liebi and A. Plech (KIT). The work is supported by DFG via priority program SPP 1327 (NO 462/5-2). The research leading to these results has received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under Grant Agreement No. 312284.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S. Mao, F. Quéré, S. Guizard, X. Mao, R. Russo, G. Petite, P. Martin, Dynamics of femtosecond laser interactions with dielectrics. Appl. Phys. A Mater. Sci. Process. 79, 1695–1709 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    F. Quéré, S. Guizard, P. Martin, Time-resolved study of laser-induced breakdown in dielectrics. EPL (Europhys. Lett.) 56, 138 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219–225 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    C. Schaffer, A. Brodeur, E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 12, 1784 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    D. Tan, K.N. Sharafudeen, Y. Yue, J. Qiu, Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater Sci. 76, 154–228 (2016)CrossRefGoogle Scholar
  6. 6.
    W. Watanabe, Y. Li, K. Itoh, [INVITED] Ultrafast laser micro-processing of transparent material. Opt. Laser Technol. 78, 52–61 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Shimotsuma, P. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    E. Bricchi, B.G. Klappauf, P.G. Kazansky, Form birefringence and negative index change created by femtosecond direct writing in transparent materials. Opt. Lett. 29, 119–121 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    M. Beresna, M. Gecevičius, P.G. Kazansky, Ultrafast laser direct writing and nanostructuring in transparent materials. Adv. Opt. Photonics 6, 293–339 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Beresna, M. Gecevičius, and P.G. Kazansky, Harnessing Ultrafast Laser Induced Nanostructures in Transparent Materials, in Progress in Nonlinear Nano-Optics, ed. by S. Sakabe, C. Lienau, R. Grunwald (Springer, Switzerland, 2015), pp. 31–46Google Scholar
  11. 11.
    R. Desmarchelier, M. Lancry, M. Gecevicius, M. Beresna, P. Kazansky, B. Poumellec, Achromatic polarization rotator imprinted by ultrafast laser nanostructuring in glass. Appl. Phys. Lett. 107, 181111 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, B. Poumellec, Anatomy of a femtosecond laser processed silica waveguide [Invited]. Opt. Mater. Express 1, 998–1008 (2011)CrossRefGoogle Scholar
  13. 13.
    M. Lancry, B. Poumellec, J. Canning, K. Cook, J.Ä. Poulin, F. Brisset, Ultrafast nanoporous silica formation driven by femtosecond laser irradiation. Laser Photonics Rev. 7, 953–962 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Richter, C. Miese, S. Döring, F. Zimmermann, M.J. Withford, A. Tünnermann, S. Nolte, Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE™. Opt. Mater. Express 3, 1161–1166 (2013)CrossRefGoogle Scholar
  15. 15.
    F. Zimmermann, A. Plech, S. Richter, A. Tunnermann, S. Nolte, Ultrashort laser pulse induced nanogratings in borosilicate glass. Appl. Phys. Lett. 104, 211107 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    L. Bressel, D. de Ligny, E.G. Gamaly, A.V. Rode, S. Juodkazis, Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses. Opt. Mater. Express 1, 1150–1158 (2011)CrossRefGoogle Scholar
  17. 17.
    L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, S. Juodkazis, Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect [Invited]. Opt. Mater. Express 1, 605–613 (2011)CrossRefGoogle Scholar
  18. 18.
    T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, M. Lancry, Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing. J. Am. Ceram. Soc. 98, 1471–1477 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Lancry, R. Desmarchelier, F. Zimmermann, N. Guth, F.o. Brisset, S. Nolte, and B. Poumellec, Porous nanogratings and related form birefringence in silicate and germanate glasses, in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, (Optical Society of America, Washington/DC 2014), BW2D. 2Google Scholar
  20. 20.
    B. Poumellec, M. Lancry, A. Chahid-Erraji, P. Kazansky, Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited]. Opt. Mater. Express 1, 766–782 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Nishii, H. Yamanaka, H. Hosono, H. Kawazoe, Origin of enormous photon-induced volume expansion of GeO2–SiO2 thin glass films. Nucl. Instrum. Methods Phys. Res. B 141, 625–628 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    F. Zimmermann, A. Plech, S. Richter, S. D√∂ring, A. Tunnermann, S. Nolte, Structural evolution of nanopores and cracks as fundamental constituents of ultrashort pulse-induced nanogratings. Appl. Phys. A 114, 75–79 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E.B. Kley, A. T√ºnnermann, S. Nolte, On the fundamental structure of femtosecond laser, Äêinduced nanogratings. Laser Photonics Rev. 6, 787–792 (2012)CrossRefGoogle Scholar
  24. 24.
    Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, Y. Cheng, Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation. Opt. Lett. 40, 3623–3626 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. Taylor, P. Corkum, D. Rayner, V. Bhardwaj, Transient nanoplasmonics inside dielectrics. J. Phys. B: At. Mol. Opt. Phys. 40, S273 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    P. Kazansky, E. Bricchi, Y. Shimotsuma, K. Hirao, in Conference on Self-Assembled Nanostructures and Two-Plasmon Decay in Femtosecond Processing of Transparent Materials. Lasers and Electro-Optics 2007, Baltimore, Maryland United States, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThJ3 Google Scholar
  27. 27.
    F. Hashimoto, S. Richter, S. Nolte, Y. Ozeki, and K. Itoh, Time-resolved microraman measurement of temperature dynamics during high-repetition-rate ultrafast laser microprocessing, Proceedings of LAMP 2013(2013)Google Scholar
  28. 28.
    S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708–4716 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    M. Lancry, E. Régnier, B. Poumellec, Fictive temperature in silica-based glasses and its application to optical fiber manufacturing. Prog. Mater. Sci. 57(1), 63–97 (2012)CrossRefGoogle Scholar
  30. 30.
    A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses. Phys. Rev. B 71, 125435 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    F. Zimmermann, Sr Richter, S. D√∂ring, A. T√ºnnermann, S. Nolte, Ultrastable bonding of glass with femtosecond laser bursts. Appl. Opt. 52, 1149–1154 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    R. Desmarchelier, B. Poumellec, F. Brisset, S. Mazerat, M. Lancry, In the heart of femtosecond laser induced nanogratings: from porous nanoplanes to form birefringence. World J. Nano Sci. Eng. 5, 115 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    M. Lancry, J. Canning, K. Cook, M. Heili, D. Neuville, B. Poumellec, Nanoscale femtosecond laser milling and control of nanoporosity in the normal and anomalous regimes of GeO2–SiO2 glasses. Opt. Mater. Express 6, 321–330 (2016)CrossRefGoogle Scholar
  34. 34.
    Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, Y. Cheng, High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation. Optica 2, 329–334 (2015)CrossRefGoogle Scholar
  35. 35.
    M. Beresna, M. Geceviçius, P.G. Kazansky, Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited]. Opt. Mater. Express 1, 783–795 (2011)CrossRefGoogle Scholar
  36. 36.
    E. Simova, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Femtosecond laser-induced long-range self-organized periodic planar nanocracks for applications in biophotonics,” in Proc. SPIE 6458, Photon Processing in Microelectronics and Photonics VI, 64581B, ed. by C.B. Arnold , T. Okada , M. Meunier, A.S. Holmes , D.B. Geohegan, F. Träger, J.J. Dubowski (SPIE, Bellingham WA, USA, 2007), 64581B-64581B-64514, 13 Mar 2007. doi: 10.1117/12.699157

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Lancry
    • 1
  • F. Zimmerman
    • 2
  • R. Desmarchelier
    • 1
  • J. Tian
    • 1
  • F. Brisset
    • 1
  • S. Nolte
    • 2
  • B. Poumellec
    • 1
  1. 1.Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR CNRS-UPS 8182Université de Paris SudOrsayFrance
  2. 2.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations