Advertisement

Applied Physics B

, 122:13 | Cite as

Towards a quantum interface between telecommunication and UV wavelengths: design and classical performance

  • Helge RützEmail author
  • Kai-Hong Luo
  • Hubertus Suche
  • Christine Silberhorn
Article
Part of the following topical collections:
  1. Quantum Repeaters: From Components to Strategies

Abstract

We propose and characterize a quantum interface between telecommunication wavelengths (1311 nm) and an Yb\({}^{+}\)-dipole transition (369.5 nm) based on a second-order sum-frequency process in a PPKTP waveguide. An external (internal) conversion efficiency above 5 % (10 %) is shown using classical bright light.

Keywords

Conversion Efficiency Pump Power Lithium Niobate Poling Period Periodically Pole Lithium Niobate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Harald Herrmann for helpful discussions and also the reviewers for useful comments, contributing to improve the manuscript. We acknowledge financial support provided by the German Bundesministerium für Bildung und Forschung within the QuOReP and Q.com-Q framework.

References

  1. 1.
    H.J. Kimble, The quantum internet. Nature 453, 1023–1030 (2008)CrossRefADSGoogle Scholar
  2. 2.
    S. Olmschenk, D. Hayes, D.N. Matsukevich, P. Maunz, D.L. Moehring, C. Monroe, Quantum logic between distant trapped ions. Int. J. Quantum Inf. 8, 337 (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    P. Kumar, Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990)CrossRefADSGoogle Scholar
  4. 4.
    J. Huang, P. Kumar, Observation of quantum frequency conversion. Phys. Rev. Lett. 68, 2153–2156 (1992)CrossRefADSGoogle Scholar
  5. 5.
    A.P. Vandevender, P.G. Kwiat, High efficiency single photon detection via frequency up-conversion. J. Mod. Opt. 51, 1433–1445 (2004)CrossRefADSzbMATHGoogle Scholar
  6. 6.
    M.A. Albota, F.N.C. Wong, Efficient single-photon counting at 1.55\(\mu\)m by means of frequency upconversion. Opt. Lett. 29, 1449–1451 (2004)CrossRefADSGoogle Scholar
  7. 7.
    M.G. Raymer, K. Srinivasan, Manipulating the color and shape of single photons. Phys. Today 65, 32 (2012)CrossRefGoogle Scholar
  8. 8.
    M.T. Rakher, L. Ma, O. Slattery, X. Tang, K. Srinivasan, Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nat. Photonics 4, 786–791 (2010)CrossRefADSGoogle Scholar
  9. 9.
    S. Ates, I. Agha, A. Gulinatti, I. Rech, M.T. Rakher, A. Badolato, K. Srinivasan, Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012)CrossRefADSGoogle Scholar
  10. 10.
    S. Zaske, A. Lenhard, C.A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)CrossRefADSGoogle Scholar
  11. 11.
    R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, Wide-band quantum interface for visible-to-telecommunication wavelength conversion. Nat. Commun. 2, 1544 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, H. Zbinden, A photonic quantum information interface. Nature 437, 116–120 (2005)CrossRefADSGoogle Scholar
  13. 13.
    C.E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, R. Schnabel, Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm. Phys. Rev. Lett. 112, 073602 (2014)CrossRefADSGoogle Scholar
  14. 14.
    D. Kong, Z. Li, S. Wang, X. Wang, Y. Li, Quantum frequency down-conversion of bright amplitude-squeezed states. Opt. Express 22, 24192–24201 (2014)CrossRefADSGoogle Scholar
  15. 15.
    S. Wang, V. Pasiskevicius, F. Laurell, H. Karlsson, Ultraviolet generation by first-order frequency doubling in periodically poled \(\text{ KTiOPO }_4\). Opt. Lett. 23, 1883–1885 (1998)CrossRefADSGoogle Scholar
  16. 16.
    P. Qing, X. Yang, Long pulse, high energy output at 365 nm from an frequency-doubled Alexandrite laser. Opt. Commun. 200, 309–314 (2001)CrossRefADSGoogle Scholar
  17. 17.
    D.B. Oh, Diode-laser-based sum-frequency generation of tunable wavelength-modulated UV light for OH radical detection. Opt. Lett. 20, 100–102 (1995)CrossRefADSGoogle Scholar
  18. 18.
    L. Corner, J. Gibb, G. Hancock, A. Hutchinson, V. Kasyutich, R. Peverall, G. Ritchie, Sum frequency generation at 309nm using a violet and a near-IR DFB diode laser for detection of OH. Appl. Phys. B 74, 441–444 (2002)CrossRefADSGoogle Scholar
  19. 19.
    D.J. Berkeland, F.C. Cruz, J.C. Bergquist, Sum-frequency generation of continuous-wave light at 194 nm. Appl. Opt. 36, 4159–4162 (1997)CrossRefADSGoogle Scholar
  20. 20.
    N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, Z.-G. Hu, M. Yoshimura, Y. Mori, T. Sasaki, 200-mw-average power ultraviolet generation at 0.193 \(\mu\)m in \(\text{ K }_2\text{ Al }_2\text{ B }_2 \text{ O }_7\). Appl. Opt. 42, 2716–2719 (2003)CrossRefADSGoogle Scholar
  21. 21.
    H. Kumagai, K. Midorikawa, T. Iwane, M. Obara, Efficient sum-frequency generation of continuous-wave single-frequency coherent light at 252 nm with dual wavelength enhancement. Opt. Lett. 28, 1969–1971 (2003)CrossRefADSGoogle Scholar
  22. 22.
    J. Franzke, Sum frequency generation at 365 nm by two diode lasers applied to the detection of mercury. Spectrochim. Acta Part B Atom. Spectrosc. 53, 1595–1599 (1998)CrossRefADSGoogle Scholar
  23. 23.
    R.V. Roussev, C. Langrock, J.R. Kurz, M.M. Fejer, Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths. Opt. Lett. 29, 1518–1520 (2004)CrossRefADSGoogle Scholar
  24. 24.
    R. Clark, T. Kim, J. Kim, Double-stage frequency down-conversion system for distribution of ion-photon entanglement over long distances, in 2011 IEEE Photonics Society Summer Topical Meeting Series, (IEEE, 2011)Google Scholar
  25. 25.
    M. Pysher, R. Bloomer, C.M. Kaleva, T.D. Roberts, P. Battle, O. Pfister, Broadband amplitude squeezing in a periodically poled \(\text{ KTiOPO }_4\) waveguide. Opt. Lett. 34, 256–258 (2009)CrossRefADSGoogle Scholar
  26. 26.
    N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P.M. Ledingham, H. de Riedmatten, Storage of up-converted telecom photons in a doped crystal. New J. Phys. 16, 113021 (2014)CrossRefGoogle Scholar
  27. 27.
    J.S. Pelc, L. Ma, C.R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, M.M. Fejer, Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Opt. Express 19, 21445–21456 (2011)CrossRefADSGoogle Scholar
  28. 28.
    G.E. Kugel, F. Brehat, B. Wyncke, M.D. Fontana, G. Marnier, C. Carabatos-Nedelec, J. Mangin, The vibrational spectrum of a KTiOPO4 single crystal studied by raman and infrared reflectivity spectroscopy. J. Phys. C Solid State Phys. 21, 5565 (1988)CrossRefADSGoogle Scholar
  29. 29.
    D.L. Moehring, P. Maunz, S. Olmschenk, K.C. Younge, D.N. Matsukevich, L.-M. Duan, C. Monroe, Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007)CrossRefADSGoogle Scholar
  30. 30.
    R. Maiwald, A. Golla, M. Fischer, M. Bader, S. Heugel, B. Chalopin, M. Sondermann, G. Leuchs, Collecting more than half the fluorescence photons from a single ion. Phys. Rev. A 86, 043431 (2012)CrossRefADSGoogle Scholar
  31. 31.
    N. Trautmann, J.Z. Bernád, M. Sondermann, G. Alber, L.L. Sánchez-Soto, G. Leuchs, Generation of entangled matter qubits in two opposing parabolic mirrors. Phys. Rev. A 90, 063814 (2014)CrossRefADSGoogle Scholar
  32. 32.
    J.D. Bierlein, A. Ferretti, L.H. Brixner, W.Y. Hsu, Fabrication and characterization of optical waveguides in \(\text{ KTiOPO }_4\). Appl. Phys. Lett. 50, 1216–1218 (1987)CrossRefADSGoogle Scholar
  33. 33.
    K. Kato, E. Takaoka, Sellmeier and thermo-optic dispersion formulas for KTP. Appl. Opt. 41, 5040–5044 (2002)CrossRefADSGoogle Scholar
  34. 34.
    P.T. Callahan, K. Safak, P. Battle, T.D. Roberts, F.X. Kärtner, Fiber-coupled balanced optical cross-correlator using PPKTP waveguides. Opt. Express 22, 9749–9758 (2014)CrossRefADSGoogle Scholar
  35. 35.
    K.A. Fedorova, G.S. Sokolovskii, P.R. Battle, D.A. Livshits, E.U. Rafailov, 574–647 nm wavelength tuning by second-harmonic generation from diode-pumped PPKTP waveguides. Opt. Lett. 40, 835–838 (2015)CrossRefADSGoogle Scholar
  36. 36.
    R. Roussev, Optical-frequency mixers in periodically poled lithium niobate: Materials, modeling and characterization, Ph.D. thesis, Stanford University (2006)Google Scholar
  37. 37.
    A.H. Reshak, I.V. Kityk, S. Auluck, Investigation of the linear and nonlinear optical susceptibilities of \(\text{ KTiOPO }_4\) single crystals: Theory and experiment. J. Phys. Chem. B 114, 16705–16712 (2010)CrossRefGoogle Scholar
  38. 38.
    G. Hansson, H. Karlsson, S. Wang, F. Laurell, Transmission measurements in KTP and isomorphic compounds. Appl. Opt. 39, 5058–5069 (2000)CrossRefADSGoogle Scholar
  39. 39.
    S. Wang, V. Pasiskevicius, F. Laurell, Dynamics of green light-induced infrared absorption in \(\text{ KTiOPO }_4\) and periodically poled \(\text{ KTiOPO }_4\). J. Appl. Phys. 96, 2023–2028 (2004)CrossRefADSGoogle Scholar
  40. 40.
    Y. Colombe, D.H. Slichter, A.C. Wilson, D. Leibfried, D.J. Wineland, Single-mode optical fiber for high-power, low-loss uv transmission. Opt. Express 22, 19783–19793 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Helge Rütz
    • 1
    Email author
  • Kai-Hong Luo
    • 1
  • Hubertus Suche
    • 1
  • Christine Silberhorn
    • 1
  1. 1.Integrierte QuantenoptikUniversität PaderbornPaderbornGermany

Personalised recommendations