Characterization of a circular optical nanoantenna by nonlinear photoemission electron microscopy
- 355 Downloads
- 2 Citations
Abstract
We report on the investigation of an advanced circular plasmonic nanoantenna under ultrafast excitation using nonlinear photoemission electron microscopy (PEEM) under near-normal incidence. The circular nanoantenna is enhanced in its performance by a supporting grating and milled out from a gold film. The considered antenna shows a sophisticated physical resonance behaviour that is ideal to demonstrate the possibilities of PEEM for the experimental investigations of plasmonic effects on the nanoscale. Field profiles of the antenna resonance for both possible linear polarizations of the incident field are measured with high spatial resolution. In addition, outward-propagating Hankel plasmons, which are also excited by the structure, are measured and analysed. We compare our findings to measurements of an isolated plasmonic nanodisc resonator and scanning near-field optical microscopy measurements of both structures. All results are in very good agreement with numerical simulations as well as analytical models that are also discussed in our paper.
Keywords
Gold Film Electric Field Component Total Electric Field Bragg Resonance Localize Plasmonic ResonanceNotes
Acknowledgments
We thank N. Asger Mortensen (DTU Denmark) for stimulating discussions and Focus GmbH (Germany) for the sketch of the PEEM in Fig. 2. Funding is acknowledged by Deutsche Forschungsgemeinschaft (DFG SPP 1391 Ultrafast Nanooptics), the Thuringian Ministry for Economy, Science and Digital Society (TMWWDG Pro-Exzellenz program), and the Carl Zeiss foundation.
References
- 1.P. Bharadwaj, B. Deutsch, L. Novotny, Adv. Opt. Photonics 1, 438 (2009)CrossRefGoogle Scholar
- 2.L. Novotny, N. van Hulst, Nat. Photonics 5, 83 (2011)ADSCrossRefGoogle Scholar
- 3.P. Biagioni, J.-S. Huang, B. Hecht, Rep. Prog. Phys. 75, 024402 (2012)ADSCrossRefGoogle Scholar
- 4.A.E. Krasnok et al., Physics-Uspekhi 56, 539 (2013)ADSCrossRefGoogle Scholar
- 5.J. Dorfmuller et al., Nano Lett. 10, 3596 (2010)ADSCrossRefGoogle Scholar
- 6.P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Phys. Rev. Lett. 94, 017402 (2005)ADSCrossRefGoogle Scholar
- 7.J. Qi et al., Opt. Express 23, 14583 (2015)ADSCrossRefGoogle Scholar
- 8.M.I. Stockman, M.F. Kling, U. Kleineberg, F. Krausz, Nat. Photonics 1, 539 (2007)ADSCrossRefGoogle Scholar
- 9.M. Aeschlimann et al., Nature 446, 301 (2007)ADSCrossRefGoogle Scholar
- 10.N. Rotenberg, L. Kuipers, Nat. Photonics 8, 919 (2014)ADSCrossRefGoogle Scholar
- 11.M. Wulf, A. de Hoogh, N. Rotenberg, L. Kuipers, ACS Photonics 1, 1173 (2014)CrossRefGoogle Scholar
- 12.L. Douillard, F. Charra, J. Electron Spectrosc. Relat. Phenom. 189, 24 (2013)CrossRefGoogle Scholar
- 13.G.H. Fecher, O. Schmidt, Y. Hwu, G. Schönhense, J. Electron Spectrosc. Relat. Phenom. 126, 77 (2002)CrossRefGoogle Scholar
- 14.O. Schmidt et al., Appl. Phys. B 74, 223 (2002)ADSCrossRefGoogle Scholar
- 15.M. Cinchetti et al., Phys. Rev. Lett. 95, 047601 (2005)ADSCrossRefGoogle Scholar
- 16.F.-J. Meyer zu Heringdorf, L.I. Chelaru, S. Möllenbeck, D. Thien, M. Horn-von Hoegen, Surf. Sci. 601, 4700 (2007)ADSCrossRefGoogle Scholar
- 17.A. Kubo, N. Pontius, H. Petek, Nano Lett. 7, 470 (2007)ADSCrossRefGoogle Scholar
- 18.L.I. Chelaru, F.-J. Meyer zu Heringdorf, Surf. Sci. 601, 4541 (2007)ADSCrossRefGoogle Scholar
- 19.S.H. Chew et al., Appl. Phys. Lett. 100, 051904 (2012)ADSCrossRefGoogle Scholar
- 20.Y. Gong, A.G. Joly, D. Hu, P.Z. El-Khoury, W.P. Hess, Nano Lett. 15, 3472 (2015)ADSCrossRefGoogle Scholar
- 21.L. Zhang, A. Kubo, L. Wang, H. Petek, T. Seideman, Phys. Rev. B 84, 245442 (2011)ADSCrossRefGoogle Scholar
- 22.N. Buckanie, P. Kirschbaum, S. Sindermann, F.-J. Meyer zu Heringdorf, Ultramicroscopy 130, 49 (2013)CrossRefGoogle Scholar
- 23.C. Lemke et al., Opt. Express 21, 27392 (2013)ADSCrossRefGoogle Scholar
- 24.C. Lemke et al., Appl. Phys. B 116, 585 (2014)ADSCrossRefGoogle Scholar
- 25.C. Lemke et al., Nano Lett. 14, 2431 (2014)ADSCrossRefGoogle Scholar
- 26.Y. Gong, A.G. Joly, P.Z. El-Khoury, W.P. Hess, J. Phys. Chem. C 118, 25671 (2014)CrossRefGoogle Scholar
- 27.P. Kahl et al., Plasmonics 9, 1401 (2014)CrossRefGoogle Scholar
- 28.P. Melchior et al., Phys. Rev. B 83, 235407 (2011)ADSCrossRefGoogle Scholar
- 29.C. Lemke et al., Nano Lett. 13, 1053 (2013)ADSCrossRefGoogle Scholar
- 30.F. Schertz et al., Nano Lett. 12, 1885 (2012)ADSCrossRefGoogle Scholar
- 31.P. Klaer et al., Appl. Phys. Lett. 106, 261101 (2015)ADSCrossRefGoogle Scholar
- 32.S. Nerkararyan, K. Nerkararyan, N. Janunts, T. Pertsch, Phys. Rev. B 82, 245405 (2010)ADSCrossRefGoogle Scholar
- 33.R. Filter, J. Qi, C. Rockstuhl, F. Lederer, Phys. Rev. B 85, 125429 (2012)ADSCrossRefGoogle Scholar
- 34.S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)Google Scholar
- 35.M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (Dover, Mineola, 1964)zbMATHGoogle Scholar
- 36.S.B. Hasan et al., Phys. Rev. B 84, 195405 (2011)ADSCrossRefGoogle Scholar
- 37.T. Kaiser, S.B. Hasan, T. Paul, T. Pertsch, C. Rockstuhl, Phys. Rev. B 88, 035117 (2013)ADSCrossRefGoogle Scholar
- 38.J. Qi et al., J. Opt. Soc. Am. A 31, 388 (2014)ADSCrossRefGoogle Scholar
- 39.A.F. Oskooi et al., Comput. Phys. Commun. 181, 687 (2010)ADSCrossRefGoogle Scholar
- 40.Boyd, Nonlinear Optics, 3rd edn. (Elsevier/Academic Press, Amsterdam, 2008)Google Scholar
- 41.M. Born, E. Wolf, Principles of Optics, 6th edn. (Pergamon Press, Oxford, 1991)Google Scholar
- 42.A.E. Klein, N. Janunts, M. Steinert, A. Tünnermann, T. Pertsch, Nano Lett. 14, 5010 (2014)CrossRefGoogle Scholar