Applied Physics B

, 122:45 | Cite as

The role of electromagnetic interactions in second harmonic generation from plasmonic metamaterials

  • Julian Alberti
  • Heiko Linnenbank
  • Stefan LindenEmail author
  • Yevgen Grynko
  • Jens Förstner
Part of the following topical collections:
  1. Ultrafast Nanooptics


We report on second harmonic generation spectroscopy on a series of rectangular arrays of split-ring resonators. Within the sample series, the lattice constants are varied, but the area of the unit cell is kept fixed. The SHG signal intensity of the different arrays upon resonant excitation of the fundamental plasmonic mode strongly depends on the respective arrangement of the split-ring resonators. This finding can be explained by variations of the electromagnetic interactions between the split-ring resonators in the different arrays. The experimental results are in agreement with numerical calculations based on the discontinuous Galerkin time-domain method.


Second Harmonic Generation Plasmonic Mode Electromagnetic Interaction Metallic Nanostructures Second Harmonic Generation Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) through programs SPP1391 (S.L. and J.F.) and TRR142 (J.F.). Computing time was granted by the Paderborn Center for Parallel Computing (PC2).


  1. 1.
    J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Nat. Mater. 9, 193–204 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    M. Kauranen, A.V. Zayats, Nat. Photon. 6, 737–748 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    B. Lamprecht, A. Leitner, A. Aussenegg, Appl. Phys. B 64, 269–272 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    B.K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, M. Kauranen, Nano Lett. 7, 1251–1255 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    M.W. Klein, C. Enkrich, M. Wegener, S. Linden, Science 313, 502–504 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    F.B.P. Niesler, N. Feth, S. Linden, M. Wegener, Opt. Lett. 36, 1533–1535 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    M.J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, M. Kauranen, Opt. Mater. Express 1, 46–56 (2011)CrossRefGoogle Scholar
  8. 8.
    K. Thyagarajan, S. Rivier, A. Lovera, O.J.F. Martin, Opt. Express 20, 12860–12865 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    H. Aouani, M. Navarro-Cia, M. Rahmani, T.P.H. Sidiropoulos, M. Hong, R.F. Oulton, S.A. Maier, Nano Lett. 12, 4997–5002 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg, Phys. Rev. Lett. 83, 4421–4424 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    B. Metzger, M. Hentschel, M. Lippitz, H. Giessen, Opt. Lett. 37, 4741–4743 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    T. Hanke, G. Krauss, D. Trutlein, B. Wild, R. Bratschitsch, A. Leitenstorfer, Phys. Rev. Lett. 103, 257404 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    M. Hentschel, T. Utikal, H. Giessen, M. Lippitz, Nano Lett. 12, 3778–3782 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    B. Metzger, T. Schumacher, M. Hentschel, M. Lippitz, H. Giessen, ACS Photon. 1, 471–476 (2014)CrossRefGoogle Scholar
  15. 15.
    R. Czaplicki, H. Husu, R. Siikanen, J. Mkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, M. Kuittinen, Phys. Rev. Lett. 110, 093902 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    S. Linden, F.B.P. Niesler, J. Förstner, Y. Grynko, T. Meier, M. Wegener, Phys. Rev. Lett. 109, 015502 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    H. Linnenbank, S. Linden, Opt. Express 22, 18072–18077 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    C. Rockstuhl, T. Zentgraf, C. Etrich, J. Kuhl, F. Lederer, H. Giessen, Opt. Express 14, 8827–8836 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    I. Sersic, M. Frimmer, E. Verhagen, A.M. Koenderink, Phys. Rev. Lett. 103, 213902 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, S. Linden, Opt. Express 18, 6545–6554 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    B. Lamprecht, G. Schider, R.T. Lechner, H. Ditlbacher, J.R. Krenn, A. Leitner, F.R. Aussenegg, Phys. Rev. Lett. 84, 4721–4724 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, F. Ciccacci, M. Finazzi, Nat. Nanotechnol. 10, 412–417 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    J.S. Hesthaven, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (Springer, New York, 2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    K. Stannigel, M. König, J. Niegemann, K. Busch, Opt. Express 17, 14934 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    A. Akhiezer, Plasma Electrodynamics: Nonlinear Theory and Fluctuations, vol. 2 (Pergamon, New York, 1975)Google Scholar
  26. 26.
    Y. Zeng, W. Hoyer, J. Liu, S.W. Koch, J.V. Moloney, Phys. Rev. B 79, 235109 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Julian Alberti
    • 1
  • Heiko Linnenbank
    • 1
  • Stefan Linden
    • 1
    Email author
  • Yevgen Grynko
    • 2
  • Jens Förstner
    • 2
  1. 1.Physikalisches InstitutRheinische Friedrich-Wilhelms Universität BonnBonnGermany
  2. 2.Department of Electrical EngineeringUniversity of PaderbornPaderbornGermany

Personalised recommendations