Applied Physics B

, 122:44 | Cite as

Quantum interference control of electrical currents in GaAs microstructures: physics and spectroscopic applications

  • E. Sternemann
  • T. Jostmeier
  • C. Ruppert
  • S. Thunich
  • H. T. Duc
  • R. Podzimski
  • T. Meier
  • M. BetzEmail author
Part of the following topical collections:
  1. Ultrafast Nanooptics


We present a comprehensive study of coherently controlled charge currents in electrically contacted GaAs microdevices. Currents are generated all-optically by phase-related femtosecond \(\omega /2\omega\) pulse pairs and are often linked to the third-order optical nonlinearity \(\chi ^{(3)}(0;\omega ,\omega ,-2\omega )\). Here, we first focus on elevated irradiances where absorption saturation and ultimately the onset of Rabi oscillations contribute to the optical response. In particular, we identify clear departures of the injected current from the \(\chi ^{(3)}\)-expectation \({\mathrm {d}}J/{\mathrm {d}}t \propto E_\omega ^2 E_{2\omega }\). Theoretical simulations for the coherently controlled current based on the semiconductor Bloch equations agree well with the experimental trends. We then move on to investigate spectroscopic applications of the quantum interference control technique. In particular, we implement a versatile scheme to analyze the phase structure of femtosecond pulses. It relies on phase-sensitive \(\chi ^{(3)}\)-current injection driven by two time-delayed portions of the \(\omega\)/\(2\omega\) pulse pair. Most strikingly, the group velocity dispersions of both the \(\omega\) and \(2\omega\) components can be unambiguously determined from a simple Fourier transform of the resulting current interferogram. Finally, we aim to use femtosecond \(\omega /2\omega\) pulse pairs to demonstrate a theoretically proposed scheme for all-optical current detection in thin GaAs membranes. However, we find the signal to be superimposed by second harmonic generation related to the electric field inducing the current. As a result, the currents’ signature cannot be unambiguously identified.


GaAs Second Harmonic Generation Harmonic Generation Current Injection Group Velocity Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The experimental work presented in this review article has been supported by the DFG within the priority program SPP1391 “Ultrafast Nanooptics” (Grant BE3752/4-2). The most recent work has also been supported by the SFB TRR 142 of the DFG. The theory part has been supported by the DFG-Project ME 1916/2 and in the framework of the research training group GRK 1464. C. R. acknowledges support by the Alexander von Humboldt-foundation. We thank A. W. Holleitner for help with the microstructure fabrication and contributions to the early optical experiments. We also thank D. Schuh, W. Wegscheider, and S. Malzer for providing the LT-GaAs material and the electrically contacted GaAs thin film.


  1. 1.
    R. Atanasov, A. Haché, J.L.P. Hughes, H.M. van Driel, J.E. Sipe, Phys. Rev. Lett. 76, 1703 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    A. Haché, Y. Kostoulas, R. Atanasov, J.L.P. Hughes, J.E. Sipe, H.M. van Driel, Phys. Rev. Lett. 78, 306 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    L. Costa, M. Betz, M. Spasenović, A.D. Bristow, H.M. van Driel, Nat. Phys. 3, 632 (2007)CrossRefGoogle Scholar
  4. 4.
    C. Ruppert, S. Thunich, G. Abstreiter, A. Fontcuberta i Morral, A.W. Holleitner, M. Betz, Nano Lett. 10, 1799 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    J. Güdde, M. Rohleder, T. Meier, S.W. Koch, U. Höfer, Science 318, 1287 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    D.A. Bas, K. Vargas-Velez, S. Babakiray, T.A. Johnson, P. Borisov, T.D. Stanescu, D. Lederman, A.D. Bristow, Appl. Phys. Lett. 106, 041109 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    E. Sternemann, T. Jostmeier, C. Ruppert, H.T. Duc, T. Meier, M. Betz, Phys. Rev. B 88, 165204 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    E. Sternemann, M. Betz, C. Ruppert, Opt. Lett. 39, 3654 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    J.-T. Liu, F.-H. Su, X.-H. Deng, H. Wang, Opt. Express 20, 11694 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, 2003)CrossRefGoogle Scholar
  11. 11.
    B. Pasenow, H.T. Duc, T. Meier, S.W. Koch, Solid State Commun. 145, 61–65 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    H.T. Duc, J. Frstner, T. Meier, Phys. Rev. B 82, 115316 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    R. Podzimski, H.T. Duc, T. Meier, Proc. SPIE 9361, 93611V (2015)ADSCrossRefGoogle Scholar
  14. 14.
    P. Roos, Q. Quraishi, S. Cundiff, R. Bhat, J.E. Sipe, Opt. Express 11, 2081 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    R. Trebino, K.W. Delong, D.N. Fittinghoff, J.N. Sweetser, M.A. Krumbügel, B.A. Richman, D.J. Kane, Rev. Sci. Instrum. 68, 3277 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, Nature 414, 286 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, R. Huber, Nat. Photonics 5, 31 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    S. Thunich, C. Ruppert, A.W. Holleitner, M. Betz, Opt. Lett. 36, 1791 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    J.E. Chamberlain, J.E. Gibbs, H.A. Gebbie, Nature 198, 874 (1963)ADSCrossRefGoogle Scholar
  20. 20.
    M. Born, E. Wolf, Principles of Optics, 7th expanded edn. (Cambridge University Press, Cambridge, 1999)CrossRefGoogle Scholar
  21. 21.
    D.D. Bhawalkar, L.G. Nair, S.C. Mehendale, Opt. Commun. 23, 427 (1977)ADSCrossRefGoogle Scholar
  22. 22.
    Code for retrieving a pulse intensity and phase from Its FROG Trace. Available from the Trebino group at
  23. 23.
    B.A. Ruzicka, L.K. Werake, G. Xu, J.B. Khurgin, E.Y. Sherman, J.Z. Wu, H. Zhao, Phys. Rev. Lett. 108, 077403 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    J.L.P. Hughes, J.E. Sipe, Phys. Rev. B 53, 10751 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    S. Buckley, M. Radulaski, K. Biermann, J. Vuckovic, Appl. Phys. Lett. 103, 211117 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    C.H. Lee, R.K. Chang, N. Bloembergen, Phys. Rev. Lett. 18, 167 (1967)ADSCrossRefGoogle Scholar
  27. 27.
    P. Godefroy, W. de Jong, C.W. van Hasselt, M.A.C. Devillers, T. Rasing, Appl. Phys. Lett. 68, 1981 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    J. Miragliotta, D.K. Wickenden, Phys. Rev. B 53, 1388 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    P.T. Wilson, Y. Jiang, O.A. Aktsipetrov, E.D. Mishina, M.C. Downer, Opt. Lett. 24, 496 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • E. Sternemann
    • 1
  • T. Jostmeier
    • 1
  • C. Ruppert
    • 1
  • S. Thunich
    • 1
  • H. T. Duc
    • 2
    • 3
  • R. Podzimski
    • 2
  • T. Meier
    • 2
  • M. Betz
    • 1
    Email author
  1. 1.Experimentelle Physik 2TU DortmundDortmundGermany
  2. 2.Department of Physics and CeOPPUniversität PaderbornPaderbornGermany
  3. 3.Ho Chi Minh City Institute of PhysicsVietnam Academy of Science and TechnologyHo Chi Minh CityVietnam

Personalised recommendations