Applied Physics B

, 122:20 | Cite as

Single telecom photon heralding by wavelength multiplexing in an optical fiber

  • Andreas Lenhard
  • José Brito
  • Stephan Kucera
  • Matthias Bock
  • Jürgen Eschner
  • Christoph Becher
Article
Part of the following topical collections:
  1. Quantum Repeaters: From Components to Strategies

Abstract

We demonstrate the multiplexing of a weak coherent and a quantum state of light in a single telecommunication fiber. For this purpose, we make use of spontaneous parametric down conversion and quantum frequency conversion to generate photon pairs at 854 nm and the telecom O-band. The herald photon at 854 nm triggers a telecom C-band laser pulse. The telecom single photon (O-band) and the laser pulse (C-band) are combined and coupled to a standard telecom fiber. Low-background time correlation between the weak coherent and quantum signal behind the fiber shows successful multiplexing.

Keywords

Laser Pulse Fiber Bragg Grating Quantum Channel Wavelength Division Multiplexer Lithium Niobate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work was funded by the German Federal Ministry of Science and Education (BMBF) within the projects “Q.com-Q” (Contract No. 16KIS0127). J. Brito acknowledges support by CONICYT.

References

  1. 1.
    H. Shibata, T. Honjo, K. Shimizu, Quantum key distribution over a 72 dB channel loss using ultralow dark count superconducting single-photon detectors. Opt. Lett. 39, 5078–5081 (2014)CrossRefADSGoogle Scholar
  2. 2.
    T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, H. Takesue, Entanglement distribution over 300 km of fiber. Opt. Express 21, 23241–23249 (2013)CrossRefADSGoogle Scholar
  3. 3.
    H. Takesue, S. Nam, Q. Zhang, R.H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photonics 1, 343–348 (2007)CrossRefADSGoogle Scholar
  4. 4.
    M. Peev, C. Pacher, R. Alleaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J.F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legre, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A.W. Sharpe, A.J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R.T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z.L. Yuan, H. Zbinden, A. Zeilinger, The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)CrossRefADSGoogle Scholar
  5. 5.
    M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J.F. Dynes, A.R. Dixon, A.W. Sharpe, Z.L. Yuan, A.J. Shields, S. Uchikoga, M. Legre, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, A. Zeilinger, Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 19, 10387–10409 (2011)CrossRefADSGoogle Scholar
  6. 6.
    A. Rubenok, J.A. Slater, P. Chan, I. Lucio-Martinez, W. Tittel, Real-world two-photon interference and proof-of-principle quantum key distribution Immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013)CrossRefADSGoogle Scholar
  7. 7.
    W. Tittel, J. Brendel, H. Zbinden, N. Gisin, Violation of bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998)CrossRefADSGoogle Scholar
  8. 8.
    I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, N. Gisin, Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)CrossRefADSGoogle Scholar
  9. 9.
    C.H. Bennett, G. Brassard, in International Conference on Computers, Systems and Signal Processing (Bangalore, 1984), pp. 175–179Google Scholar
  10. 10.
    P.D. Townsend, Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing. Electr. Lett. 33, 188–190 (1997)CrossRefGoogle Scholar
  11. 11.
    T.E. Chapuran, P. Toliver, N.A. Peters, J. Jackel, M.S. Goodman, R.J. Runser, S.R. McNown, N. Dallmann, R.J. Hughes, K.P. McCabe, J.E. Nordholt, C.G. Peterson, K.T. Tyagi, L. Mercer, H. Dardy, Optical networking for quantum key distribution and quantum communications. New J. Phys. 11, 105001 (2009)CrossRefADSGoogle Scholar
  12. 12.
    M.A. Hall, J.B. Altepeter, P. Kumar, Drop-in compatible entanglement for optical-fiber networks. Opt. Express 17, 14558–14566 (2009)CrossRefADSGoogle Scholar
  13. 13.
    S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, G. Franzl, Perspectives and limitations of QKD integration in metropolitan area networks. Opt. Express 23, 10359–10373 (2015)CrossRefADSGoogle Scholar
  14. 14.
    International Telecommunication Union, Spectral grids for WDM applications: DWDM frequency grid, ITU-T G.694.1, version 02/2012Google Scholar
  15. 15.
    Z.Y. Ou, Efficient conversion between photons and between photon and atom by stimulated emission. Phys. Rev. A 78, 023819 (2008)CrossRefADSGoogle Scholar
  16. 16.
    S. Zaske, A. Lenhard, C.A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)CrossRefADSGoogle Scholar
  17. 17.
    S. Blum, G.A. Olivares-Renteria, C. Ottaviani, C. Becher, G. Morigi, Single-photon frequency conversion in nonlinear crystals. Phys. Rev. A 88, 053807 (2013)CrossRefADSGoogle Scholar
  18. 18.
    M. Bock, A. Lenhard, C. Becher, A highly efficient heralded single photon source for telecom wavelengths based on a PPLN ridge waveguide (2016) (Manuscript in preparation)Google Scholar
  19. 19.
    Corning SMF-28e+ Optical Fiber with NexCor Technology—Product Information, Document PI1463, December 2007, Corning IncGoogle Scholar
  20. 20.
    C. Ho, A. Lamas-Linares, C. Kurtsiefer, Clock synchronization by remote detection of correlated photon pairs. New J. Phys. 11, 045011 (2009)CrossRefADSGoogle Scholar
  21. 21.
    N. Piro, A. Haase, M.W. Mitchell, J. Eschner, An entangled photon source for resonant single-photon-single-atom interaction. J. Phys. B At. Mol. Opt. Phys. 42, 114002 (2009)CrossRefADSGoogle Scholar
  22. 22.
    N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, J. Eschner, Heralded single-photon absorption by a single atom. Nat. Phys. 7, 17–20 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andreas Lenhard
    • 1
  • José Brito
    • 2
  • Stephan Kucera
    • 2
  • Matthias Bock
    • 1
  • Jürgen Eschner
    • 2
  • Christoph Becher
    • 1
  1. 1.Quantenoptik, Fachrichtung 7.2Universität des SaarlandesSaarbrückenGermany
  2. 2.Quantenphotonik, Fachrichtung 7.2Universität des SaarlandesSaarbrückenGermany

Personalised recommendations