Applied Physics B

, 122:37 | Cite as

Coherent photocurrent spectroscopy of single InP-based quantum dots in the telecom band at 1.5 µm

  • S. GordonEmail author
  • M. Yacob
  • J. P. Reithmaier
  • M. Benyoucef
  • A. Zrenner
Part of the following topical collections:
  1. Quantum Repeaters: From Components to Strategies


In this work we study the resonant and coherent properties of single InP-based InAs quantum dots, which show an optical emission in the telecom C-band and L-band. High-resolution resonant photocurrent spectroscopy on p–i–n devices reveals narrow linewidths and fully resolved fine structure splittings. We observe Lorentzian line shapes, which allow for the extraction of dephasing times as a function of the applied bias voltage. Coherent ps laser excitation results in pronounced Rabi rotations with increasing pulse area. For π-pulse excitation, we obtain more than 93 % of the theoretically expected photocurrent amplitude. Our results also demonstrate that such state-of-the-art InP-based quantum dots for the telecom band exhibit promising key parameters comparable to well-established InAs/GaAs counterparts.


Bias Voltage Optical Parametric Oscillator Molecular Beam Epitaxy Growth Internal Electric Field Dephasing Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge financial support from the German Federal Ministry of Education and Research (BMBF) via the projects 16KIS0112 and 16KIS0114.


  1. 1.
    P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, Lidong Zhang, E. Hu, A. Imamoglu, Science 290, 2282 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    T.H. Stievater, X. Li, D.G. Steel, D. Gammon, D.S. Katzer, D. Park, C. Piermarocchi, L.J. Sham, Phys. Rev. Lett. 87, 133603 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, G. Abstreiter, Nature 418, 612 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    S. Stufler, P. Ester, A. Zrenner, M. Bichler, Phys. Rev. Lett. 96, 37402 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    H.-J. Briegel, W. Dür, J. Cirac, P. Zoller, Phys. Rev. Lett. 81, 5932 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    R. Trotta, J. Martín-Sánchez, I. Daruka, C. Ortix, A. Rastelli, Phys. Rev. Lett. 114, 150502 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Y.M. He, Y. He, Y.J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.Y. Lu, J.-W. Pan, Nat. Nanotechnol. 8, 213 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    M. Müller, S. Bounouar, K.D. Jöns, M. Glässl, P. Michler, Nat. Photon 8, 224 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    A. Muller, E.B. Flagg, P. Bianucci, X.Y. Wang, D.G. Deppe, W. Ma, J. Zhang, G.J. Salamo, M. Xiao, C.K. Shih, Phys. Rev. Lett. 99, 187402 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    S. Zaske, A. Lenhard, C.A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.M. Schulz, M. Jetter, P. Michler, C. Becher, Phys. Rev. Lett. 109, 147404 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    T. Miyazawa, T. Nakaoka, K. Watanabe, N. Kumagai, N. Yokoyama, Y. Arakawa, Jpn. J. Appl. Phys 49, 06GJ09 (2010)Google Scholar
  12. 12.
    M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, P. Michler, Appl. Phys. Lett. 106, 122105 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M.B. Ward, T. Farrow, P. See, Z.L. Yuan, O.Z. Karimov, A.J. Bennett, A.J. Shields, P. Atkinson, K. Cooper, D.A. Ritchie, Appl. Phys. Lett. 90, 63512 (2007)CrossRefGoogle Scholar
  14. 14.
    Ł. Dusanowski, M. Syperek, W. Rudno-Rudziński, P. Mrowiński, G. Sȩk, J. Misiewicz, A. Somers, J.P. Reithmaier, S. Höfling, A. Forchel, Appl. Phys. Lett. 103, 253113 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    M.E. Reimer, D. Dalacu, J. Lapointe, P.J. Poole, D. Kim, G.C. Aers, W.R. McKinnon, R.L. Williams, Appl. Phys. Lett. 94, 011108 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    M.D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P.J. van Veldhoven, R. Nötzel, M. Notomi, Sci. Rep. 2, 321 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M. Benyoucef, M. Yacob, J.P. Reithmaier, J. Kettler, P. Michler, Appl. Phys. Lett. 103, 162101 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, Y. Arakawa, Jpn. J. Appl. Phys. 47, 2880 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    M. Yacob, J.P. Reithmaier, M. Benyoucef, Appl. Phys. Lett. 104, 22113 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Ediger, G. Bester, A. Badolato, P.M. Petroff, K. Karrai, A. Zunger, R.J. Warburton, Nat. Phys. 3, 774 (2007)CrossRefGoogle Scholar
  21. 21.
    M. Bayer, G. Ortner, O. Stern, A. Kuther, A.A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T.L. Reinecke, S.N. Walck, J.P. Reithmaier, F. Klopf, F. Schäfer, Phys. Rev. B 65, 195315 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    S. Stufler, P. Ester, A. Zrenner, M. Bichler, Appl. Phys. Lett. 85, 4202 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • S. Gordon
    • 1
    Email author
  • M. Yacob
    • 2
  • J. P. Reithmaier
    • 2
  • M. Benyoucef
    • 2
  • A. Zrenner
    • 1
  1. 1.Physics Department and Center of Optoelectronics and Photonics Paderborn (CeOPP)Universität PaderbornPaderbornGermany
  2. 2.Institute of Nanostructure Technologies and Analytics (INA), CINSaTUniversity of KasselKasselGermany

Personalised recommendations