Applied Physics B

, Volume 121, Issue 4, pp 459–464 | Cite as

Characterization of single coal particle combustion within oxygen-enriched environments using high-speed OH-PLIF

  • J. KöserEmail author
  • L. G. Becker
  • N. Vorobiev
  • M. Schiemann
  • V. Scherer
  • B. Böhm
  • A. Dreizler


This work presents first-of-its-kind high-speed planar laser-induced fluorescence measurements of the hydroxyl radical in the boundary layer of single coal particles. Experiments were performed in a laminar flow reactor providing an oxygen-enriched exhaust gas environment at elevated temperatures. Single coal particles in a sieve fraction of 90–125 µm and a significant amount of volatiles (36 wt%) were injected along the burner’s centerline. Coherent anti-Stokes Raman spectroscopy measurements were taken to characterize the gas-phase temperature. Time-resolved imaging of the OH distribution at 10 kHz allowed identifying reaction and post-flame zones and gave access to the temporal evolution of burning coal particles. During volatile combustion, a symmetric diffusion flame was observed around the particle starting from a distance of ~150 µm from the particle surface. For subsequent char combustion, this distance decreased and the highest OH signals appeared close to the particle surface.


Laser Sheet Diffusion Flame Coal Particle Char Combustion Flame Luminosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the sponsorship of the Deutsche Forschungsgemeinschaft through SFB/TRR 129, subprojects A02 and B05. A. Dreizler is grateful for generous support through the Gottfried Wilhelm Leibniz program of Deutsche Forschungsgemeinschaft.


  1. 1.
    B. Metz, O. Davidson, H.C. de Coninck, M. Loos, L.A. Meyer, Carbon dioxide Capture and Storage (Cambridge University Press, Cambridge, 2005)Google Scholar
  2. 2.
    H.-Y. Cai, Fuel 75(1), 15–24 (1996)CrossRefGoogle Scholar
  3. 3.
    R.H. Essenhigh, M.K. Misra, D.W. Shaw, Combust. Flame 77, 3–30 (1989)CrossRefGoogle Scholar
  4. 4.
    R.C. Shurtz, K.K. Kolste, T.H. Fletcher, Energy Fuels 25, 2163–2173 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Liu, M. Geier, A. Molina, C.R. Shaddix, Int. J. Greenh. Gas Control 5, S36–S46 (2011)CrossRefGoogle Scholar
  6. 6.
    R. Khatami, C. Stivers, Y.A. Levendis, Combust. Flame 159, 3554–3568 (2012)CrossRefGoogle Scholar
  7. 7.
    B. Goshayeshi, J.C. Sutherland, Combust. Flame 161, 1900–1910 (2014)CrossRefGoogle Scholar
  8. 8.
    E.S. Hecht, C.R. Shaddix, J.S. Lighty, Combust. Flame 160, 1499–1509 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Geier, C.R. Shaddix, K.A. Davis, H.-S. Shim, Appl. Energy 93, 675–679 (2012)CrossRefGoogle Scholar
  10. 10.
    R.E. Mitchell, R.J. Kee, P. Glarborg, M.E. Coltrin, Proc. Combust. Inst. 23(1), 1169–1176 (1991)CrossRefGoogle Scholar
  11. 11.
    C. Gonzalo-Tirado, S. Jiménez, R. Johansson, J. Ballester, Combust. Flame 161, 1085–1095 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Molina, C.R. Shaddix, Proc. Combust. Inst. 31, 1905–1912 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Molina, J.J. Murphy, C.R. Shaddix, L.G. Blevins, Proc. Combust. Inst. 30, 2187–2195 (2005)CrossRefGoogle Scholar
  14. 14.
    C.R. Shaddix, A. Molina, Proc. Combust. Inst. 32, 2091–2098 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Taniguchi, H. Okazaki, H. Kobayashi, S. Azuhata, H. Miyadera, H. Muto, T. Tsumura, J. Energy Resour. Technol. 123, 32 (2001)CrossRefGoogle Scholar
  16. 16.
    H. Lee, S. Choi, Combust. Flame 162, 2610–2620 (2015)CrossRefGoogle Scholar
  17. 17.
    P.A. Bejarano, Y.A. Levendis, Combust. Flame 153, 270–287 (2008)CrossRefGoogle Scholar
  18. 18.
    M. Schiemann, V. Scherer, S. Wirtz, Chem. Eng. Technol. 32, 2000–2004 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Schiemann, N. Vorobiev, V. Scherer, Appl. Opt. 54, 1097 (2015)CrossRefADSGoogle Scholar
  20. 20.
    L. Zhang, E. Binner, Y. Qiao, C.-Z. Li, Energy Fuels 24, 29–37 (2010)CrossRefGoogle Scholar
  21. 21.
    E.P. Hassel, S. Linow, Meas. Sci. Technol. 11, R37 (2000)CrossRefADSGoogle Scholar
  22. 22.
    S. Balusamy, M.M. Kamal, S.M. Lowe, B. Tian, Y. Gao, S. Hochgreb. Exp. Fluids 56, 108 (2015)CrossRefGoogle Scholar
  23. 23.
    S.M. Hwang, R. Kurose, F. Akamatsu, H. Tsuji, H. Makino, M. Katsuki, Energy Fuels 19, 382–392 (2005)CrossRefGoogle Scholar
  24. 24.
    N. Darabiha, P. Scouflaire, M. Xia, B. Fiorina, in ECM (2015)Google Scholar
  25. 25.
    N. Vorobiev, M. Schiemann, in 40th International Technical Conference on Clean Coal Fuel System, Clearwater, Florida, USA (2015), pp. 550–561Google Scholar
  26. 26.
    A. Singh, M. Mann, T. Kissel, J. Brübach, A. Dreizler, Flow Turbul. Combust. 90, 723–739 (2013)CrossRefGoogle Scholar
  27. 27.
    P.J. Trunk, I. Boxx, C. Heeger, W. Meier, B. Böhm, A. Dreizler, Proc. Combust. Inst. 34, 3565–3572 (2013)CrossRefGoogle Scholar
  28. 28.
    R.L. Gordon, C. Heeger, A. Dreizler, Appl. Phys. B 96, 745–748 (2009)CrossRefADSGoogle Scholar
  29. 29.
    E.S. Hecht, C.R. Shaddix, M. Geier, A. Molina, B.S. Haynes, Combust. Flame 159, 3437–3447 (2012)CrossRefGoogle Scholar
  30. 30.
    L. Tognotti, J.P. Longwell, A.F. Sarofim, Proc. Combust. Inst. 23, 1207–1213 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. Köser
    • 1
    Email author
  • L. G. Becker
    • 1
  • N. Vorobiev
    • 2
  • M. Schiemann
    • 2
  • V. Scherer
    • 2
  • B. Böhm
    • 3
  • A. Dreizler
    • 1
  1. 1.Fachgebiet Reaktive Strömungen und MesstechnikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of Energy Plant TechnologyRuhr-UniversityBochumGermany
  3. 3.Fachgebiet Energie- und KraftwerkstechnikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations