Advertisement

Applied Physics B

, Volume 121, Issue 3, pp 275–282 | Cite as

Improved measurement of the hyperfine structure of the laser cooling level \(4f^{12}(^3H_6)5d_{5/2}6s^2\) \((J=9/2)\) in \({}^{169}_{\,\,69}{{\mathrm {Tm}}}\)

  • S. A. FedorovEmail author
  • G. A. Vishnyakova
  • E. S. Kalganova
  • D. D. Sukachev
  • A. A. Golovizin
  • D. O. Tregubov
  • K. Yu. Khabarova
  • A. V. Akimov
  • N. N. Kolachevsky
  • V. N. Sorokin
Article

Abstract

We report on an improved measurement of the hyperfine constant of the \(4f^{12}(^3 H_6)5d_{5/2}6s^2\) \((J=9/2)\) excited state of \({}^{169}_{\,\,69}{{\mathrm {Tm}}}\) which is involved in the second-stage laser cooling of Tm. To measure the absolute value of the hyperfine splitting interval, we used Doppler-free frequency modulation saturated absorption spectroscopy of Tm atoms in a vapor cell. The sign of the hyperfine constant was determined independently by spectroscopy of laser-cooled Tm atoms. The hyperfine constant of the level was determined to be \(A_J=-422.112(32)\,\hbox {MHz}\) from the energy difference between the two hyperfine sublevels, \(-2110.56(16)\,\hbox {MHz}\). In relation to the saturated absorption measurement, we quantitatively treat contributions of various mechanisms to the line broadening and shift. We consider power broadening in the case when Zeeman sublevels of atomic levels are taken into account. We also discuss the line broadening due to frequency modulation and relative intensities of transitions in saturated absorption experiments.

Keywords

Saturated Absorption Probe Beam Thulium Hyperfine Splitting Vapor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by RFBR grants 15-02-05324a, 15-02-03936a and the program of fundamental researches of the RAS “Extreme light fields and its applications.”

References

  1. 1.
    D. Sukachev, A. Sokolov, K. Chebakov, A. Akimov, S. Kanorsky, N. Kolachevsky, V. Sorokin, Phys. Rev. A 82, 011405(R) (2010)CrossRefADSGoogle Scholar
  2. 2.
    G.A. Vishnyakova, E.S. Kalganova, D.D. Sukachev, S.A. Fedorov, A.V. Sokolov, A.V. Akimov, N.N. Kolachevsky, V.N. Sorokin, Laser Phys. 24, 074018 (2014)CrossRefADSGoogle Scholar
  3. 3.
    A.A. Golovizin, E.S. Kalganova, D.D. Sukachev, G.A. Vishnyakova, I.A. Semerikov, V.V. Soshenko, D.O. Tregubov, A.V. Akimov, N.N. Kolachevsky, K.Yu. Khabarova, V.N. Sorokin, Quant. Electron. 45(5), 482 (2015)CrossRefADSGoogle Scholar
  4. 4.
    I.I. Sobelman, Atomic Spectra and Radiative Transitions (Berlin: Springer, 1979; Moscow: Fizmatgiz, 1963)Google Scholar
  5. 5.
    G.J. Ritter, Phys. Rev. 128, 2238 (1962)CrossRefADSGoogle Scholar
  6. 6.
    W.J. Childs, H. Crosswhite, L.S. Goodman, V. Pfeufer, J. Opt. Soc. Am. B 1, 22 (1984)CrossRefADSGoogle Scholar
  7. 7.
    J. Kuhl, Z. Phys. 242, 66 (1971)CrossRefADSGoogle Scholar
  8. 8.
    S. Kröger, L. Tanriver, H.-D. Kronfeldt, G. Guthöhrlein, H.-O. Behrens, Z. Phys. D 41, 181 (1997)CrossRefADSGoogle Scholar
  9. 9.
    Gönül Başar, Günay Başar, İ.K. Öztürk, F.G. Acar, S. Kröger, Phys. Scr. 71, 159 (2005)CrossRefADSGoogle Scholar
  10. 10.
    S.G. Porsev, YuG Rakhlina, M.G. Kozlov, J. Phys. B 32, 1113 (1999)CrossRefADSGoogle Scholar
  11. 11.
    V. Pfeufer, Z. Phys. D 2, 141 (1986)CrossRefADSGoogle Scholar
  12. 12.
    H.M. Anderson, E.A. Den Hartog, J.E. Lawler, J. Opt. Soc. Am. B 13, 2382 (1996)CrossRefADSGoogle Scholar
  13. 13.
    V.S. Letokhov, V.P. Chebotaev, Nonlinear Laser Spectroscopy (Springer, Berlin, 1977)CrossRefGoogle Scholar
  14. 14.
    J. Alnis, A. Matveev, N. Kolachevsky, T. Wilken, Th Udem, T.W. Haensch, Phys. Rev. A 77, 053809 (2008)CrossRefADSGoogle Scholar
  15. 15.
    R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)CrossRefADSGoogle Scholar
  16. 16.
    J.L. Hall, L. Hollberg, T. Baer, H.G. Robinson, Appl. Phys. Lett. 39, 680 (1981)CrossRefADSGoogle Scholar
  17. 17.
    G. Camy, ChJ Bord, M. Ducloy, Opt. Commun. 41, 325 (1982)CrossRefADSGoogle Scholar
  18. 18.
    G.B. Picotto, V. Wataghin, J. Phys. B 25, 2489 (1992)CrossRefADSGoogle Scholar
  19. 19.
    O.E. Myers, E.J. Putzer, J. Appl. Phys. 30, 1987 (1959)CrossRefADSGoogle Scholar
  20. 20.
    C.J. Borde, J.L. Hall, C.V. Kunasz, D.G. Hummer, Phys. Rev. A 14, 236 (1976)CrossRefADSGoogle Scholar
  21. 21.
    O. Schmidt, K.-M. Knaak, R. Wynands, D. Meschede, Appl. Phys. B 59, 167 (1994)CrossRefADSGoogle Scholar
  22. 22.
    J.L. Hall, C.J. Borde, Appl. Phys. Lett. 29, 788 (1976)CrossRefADSGoogle Scholar
  23. 23.
    V.P. Chebotayev, V.S. Letokhov, Prog. Quant. Electr. 4, 111 (1975)CrossRefADSGoogle Scholar
  24. 24.
    G.C. Bjorklund, M.D. Levenson, W. Lenth, C. Ortiz, Appl. Phys. B 32, 145 (1983)CrossRefADSGoogle Scholar
  25. 25.
    A.M. Akul’shin, V.L. Velichanskii, R.G. Gamidov, A.P. Kazantsev, V.A. Sautenkov, G.I. Surdutovich, V.P. Yakovlev, JETP Lett. 50, 187 (1989)ADSGoogle Scholar
  26. 26.
    D.A. Smith, I.G. Hughes, Am. J. Phys. 72, 631 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. A. Fedorov
    • 1
    • 2
    • 3
    Email author
  • G. A. Vishnyakova
    • 1
    • 2
    • 3
  • E. S. Kalganova
    • 1
    • 2
    • 3
  • D. D. Sukachev
    • 1
    • 3
  • A. A. Golovizin
    • 1
    • 2
    • 3
  • D. O. Tregubov
    • 1
    • 2
    • 3
  • K. Yu. Khabarova
    • 1
    • 2
    • 3
  • A. V. Akimov
    • 1
    • 2
    • 3
  • N. N. Kolachevsky
    • 1
    • 2
    • 3
  • V. N. Sorokin
    • 1
    • 3
  1. 1.P.N. Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyState UniversityDolgoprudnyRussia
  3. 3.Russian Quantum CenterBusiness-Center “Ural”SkolkovoRussia

Personalised recommendations